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A continuum model based on the critical-state theory of soil mechanics is used to
generate stress, density, and velocity profiles, and to compute discharge rates for the
flow of granular material in a mass flow bunker. The bin—hopper transition region is
idealized as a shock across which all the variables change discontinuously.
Comparison with the work of Michalowski (1987) shows that his experimentally
determined rupture layer lies between his prediction and that of the present theory.
However, it resembles the former more closely. The conventional condition involving
a traction-free surface at the hopper exit is abandoned in favour of an exit shock
below which the material falls vertically with zero frictional stress. The basic
equations, which are not classifiable under any of the standard types, require
excessive computational time. This problem is alleviated by the introduction of the
Mohr-Coulomb approximation (MCA). The stress, density, and velocity profiles
obtained by integration of the MCA converge to asymptotic fields on moving down
the hopper. Expressions for these fields are derived by a perturbation method.
Computational difficulties are encountered for bunkers with wall angles 6, > 15°;
these are overcome by altering the initial conditions. Predicted discharge rates lie
significantly below the measured values of Nguyen et al. (1980), ranging from 38 %
at 8, = 15° to 59% at 6, = 32°. The poor prediction appears to be largely due to the
exit condition used here. Paradoxically, incompressible discharge rates lie closer to
the measured values. An approximate semi-analytical expression for the discharge
rate is obtained, which predicts values within 9% of the exact (numerical) ones in the
compressible case, and 11 % in the incompressible case. The approximate analysis
also suggests that inclusion of density variation decreases the discharge rate. This is
borne out by the exact (numerical) results — for the parameter values investigated,
the compressible discharge rate is about 10% lower than the incompressible value.
A preliminary comparison of the predicted density profiles with the measurements of
Fickie et al. (1989) shows that the material within the hopper dilates more strongly
than predicted. Surprisingly, just below the exit slot, there is good agreement
between theory and experiment.

1. Introduction

The handling and storage of granular materials such as coal, food grains, plastic
beads, and catalyst pellets are operations which are commonly encountered in
various industries (Jenike 1964 a, p. 1; Marchello 1976 ; Shamlou 1988, p. 1). Though
considerable industrial experience has accumulated over the years, the theoretical
description of granular flow is still in its infancy. Here we discuss some theoretical
aspects of one problem, namely the flow of granular materials through a bunker.

t Present address: Chemical Engineering Division, National Chemical Laboratory, Pune
411 088, India.
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Fieure 1. Coordinate systems used for a mass-flow bunker. Cartesian coordinates (x,y) in the bin
section and polar coordinates (r,6) in the hopper section. o, = major principal stress, o, = minor
principal stress.

A bunker consists of a box-like ‘bin’ section, mounted above a ‘hopper’ section,
as shown in figure 1. The bunker is filled from above and the material is allowed to
discharge through a slot at the bottom. It is desired to predict the rate of discharge
of material from the bunker, and also the forces acting on its walls.

With free-flowing materials, such as coarse sand and glass beads, two regimes of
flow are observed, depending on the slope of the hopper walls, and the amount of
material in the bunker (Nguyen, Brennen & Sabersky 1980). These arc called ‘mass
flow” and ‘funnel flow’, respectively. In mass flow, the motion of all the material in
the bunker is fairly uniform, whereas in funnel flow, there is a central core of rapidly
moving material, surrounded by ‘dead’ regions adjacent to the bunker walls, where
the material is either stagnant or moves very slowly. The mass-flow regime appears
to be less complex, and hence will be the focus of this work.

The evolution of flow patterns in mass-flow bunkers has been the subject of a
number of experimental studies, such as those of Blair-Fish & Bransby (1973), Lee,
Cowin & Templeton (1974), and Michalowski (1984, 1987). Some of the relevant
observations are briefly summarized below.

When the exit slot is opened, thin regions called ‘rupture surfaces’ form, across
which the density and velocity change sharply. These surfaces originate from the
edges of the discharge slot, and gradually spread upwards. During the initial stages
of flow, the hopper is criss-crossed by a pattern of rupture surfaces, which are seen
from radiographs to be thin bands of dilated or loosely packed material sandwiched
between blocks of denser material. This pattern is confined to the hopper section ; for
some reason, it does not propagate far into the bin section of the bunker. Thus
rupture surfaces are trapped at the bin-hopper transition. At the moment, there is
no convincing physical explanation for this phenomenon.
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Fioure 2. Radiograph of sand flowing through a bunker (6, = 30°). Reproduced from Lee ef al.
(1974) with permission from John Wiley and Sons. Dark regions indicate material having a higher
bulk density. The streaks are trajectories of lead shot, used as marker particles.

In the advanced stages of flow, the rupture surfaces in the lower part of the hopper
fade out, leaving a single surface separating dense material in the bin from dilated
material in the hopper. This may be seen from the radiograph of Lee et al. (1974)
(figure 2), where dark regions indicate material having a higher bulk density. The
density of the material in the bin appears to remain close to its initial (poured) value;
however, Michalowski (1987) has observed a mild dilation for initially dense
materials.

The streaks in figure 2 are trajectories of lead shot, which were used as marker
particles. Based on this and other evidence (Nedderman & Laohakul 1980}, we have
the following pieture of the velocity field in a bunker. Particles moves vertically
downwards in the bin with constant speed, except for narrow shear zones adjacent
to the bin walls. In the hopper section, they move radially towards the exit slot, at
least when the hopper walls are steep.

So far, we have discussed the kinematics of flow through bunkers. A few remarks
about wall stresses are now in order. The experiments of Blair-Fish & Bransby
(1973), Rao & Venkateswarlu (1974), Clague (quoted in Blight 1986), Manjunath
(1988), and others show that the normal stress on the wall increases on moving
downwards from the upper surface of the fill. If the height of fill in the bin section
is large compared to the lateral dimensions of the bunker, the normal stress tends to
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attain a constant value as the depth increases. It will be seen later that the existence
of an asymptotic stress field in the bin is central to our formulation of boundary
conditions for a steady-state problem.

The normal stress shows a sharp increase or peak at the bin-hopper transition, and
then begins to decrease along the hopper wall. It is believed that the peak in stress
occurs because the orientation of the major principal stress switches from an *active’
or nearly vertical state in the bin, to a ‘passive’ or nearly horizontal state in the
hopper (Jenike & Johanson 1968; Bransby & Blair-Fish 1974). Jenike & Johanson
(1968) attribute this change to the dilation of the material as it flows through the
hopper, causing a horizontal compression; this in turn tends to increase the
magnitude of the horizontal normal stress relative to that of the vertical normal
stress.

It is conjectured that when the exit slot is opened, a ‘switch wave’ which separates
active and passive states travels up the hopper, and gets trapped at the bin~hopper
transition. The experiments of Handley & Perry (1967) and Perry & Handley (1967)
support the notion of an active state in the bin and a passive state in the hopper.
However, there is no evidence of a travelling switch wave in the literature.
Simultaneous observations of wall stresses and flow patterns (Blair-Fish & Bransby
1973) suggests that the occurrence of a stress peak at the transition coincides with
the formation of rupture surfaces in this region, at least during the initial stage of
flow. In the advanced stage of flow, Blair-Fish & Bransby (1973) observed oscillatory
wall stresses in the transition region. They conjectured that the oscillations may be
related to the intermittent growth and decay of rupture surfaces. However, in the
absence of continuous monitoring of the velocity and density fields, it is difficult to
draw a firm conclusion.

The above discussion suggests that the bunker problem may be viewed from two
angles: (a) the initial stage of flow, and (b) the advanced stage of flow. The former
involves the formation and growth of rupture layers, and the initiation of flow. So
far, no attempts have been made to model this bchaviour. As it appears to be a
formidable problem, we shall examine only the advanced stage of flow, where one can
consider a single, fully developed rupture layer separating dense material in the bin
from loose material in the hopper. Even with this simplification, the use of a steady-
state analysis is suspect if wall stresses usually oscillate, in the manner reported by
Blair-Fish & Bransby (1973). However, it is intuitively expected that some of the
gross features of the stress and velocity fields will be revealed by a steady-state
approach. This is in keeping with Jenike’s remark that ‘in mass flow hoppers,
oscillations are slight’ (Jenike 1987). Further, such models have not yet been
carefully examined; indeed, there do not appear to have been any attempts to
simultancously predict the stress, density, and velocity fields in a mass-flow bunker.

With the above considerations in mind, we shall confine attention to a stcady-state
analysis based on a continuum model. Though the bulk of the literature on granular
flow is concerned with continuum models, discrete models have also begun to appear
(Campbell & Brennen 1985). Some of the other assumptions used here are discussed
below ; the rest will be indicated later.

(i) The material will be regarded as cohesionless, i.e. one that cannot support
tensile normal stresses. Materials such as coarse sand, seeds, and glass beads fall into
this category, whereas fine powders such as cement and cracking catalyst usually
cxhibit some amount of cohesion. Though the latter are industrially important
materials, we shall confine attention to cohesionless materials as the theory is simpler
and contains fewer parameters.
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(ii) Assuming that the distance between the front and back faces of the bunker is
large compared with the other dimensions, the flow may be regarded as being parallel
to these faces. Further, the variation in all the field variables perpendicular to the
plane of flow may be considered negligible. The assumption of plane flow greatly
simplifies the form of the constitutive relations and reduces the number of dependent
variables. To the best of our knowledge, there have been no attempts to solve truly
three-dimensional granular-flow problems. However, Schaeffer & Pitman (1988) have
recently examined some aspects of such problems.

(iii) Though the bulk of the literature on bunker flow is concerned with
incompressible analyses (Savage 1965; Davidson & Nedderman 1973; Brennen &
Pearce 1978; Kaza & Jackson 1982a, b; Meric & Tabarrok 1982), the effect of density
variation will be included in our work for the following reasons: (a) as discussed
earlier, the density of the material in the bin section is likely to be different from that
in the hopper section, and (b) density measurements in hoppers and bins (Bosley,
Schofield & Shook 1969; Blair-Fish & Bransby 1973; Van Zuilichem, Van Egmond
& de Swart 1974 ; Lee et al. 1974; Tiiziin & Nedderman 1982; Michalowski 1984,
1987 ; Fickie, Mehrabi & Jackson 1989) show that there is a marked dilation in the
vicinity of the exit slot. One other reason is discussed below.

Though a frictional theory will be used here, it appears that momentum transfer
by collisions between particles may also be important in certain parts of the flow
field. Tt is felt intuitively that frictional effects are important in slow flows at high
densities, whereas collisional effects are important in rapid flows at lower densities
(Sayed & Savage 1983; Savage et al. 1983; Johnson & Jackson 1987). Hence a
comprehensive frictional-collisional theory must allow for density variation. The
present work may therefore be regarded as a precursor to the eventual inclusion of
collisional effects.

It is the purpose of this work to predict the stress, density, and velocity fields in
a bunker, and to assess the importance of compressibility effects. To this end, we now
turn to the basic equations.

2. Basic equations
2.1. Balance laws

Using polar coordinates with origin at the vertex of the hopper (figure 1), and
confining attention to plane flow, the balance laws for steady flow take the form

Continuity

10 190
;5(7»0”1)4';@(»0%) =0, (1)

Momentum balance (r-component)

v, welv, I 10 19 Teo -
[”’ o "7 a0 v T ra O T g T m T, Tegeest=0, @)

Momentum balance (#-component)

vy 10V, ¥, 7,
p[”’ I T

10 , 10 .
:|+'735(7 0’,0)+;a—0(0'00)—p981n0 =0. (3)

Here p = p,¢, is the bulk density, where p, is the density of the solid, which is
assumed to be constant and ¢, is the volume fraction occupied by the solid; o,,, o,
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and o are the components of the stress tensor, which is defined in the compressive
sense; v, and v, are the radial and circumferential components of velocity,
respectively ; and g is the acceleration due to gravity.

2.2. Constitutive models

At present, there appear to be three broad types of constitutive models for describing
granular flow in various geometries’ (Tuzun et al. 1982; Savage et al. 1983; Jackson
1986):

(@) kinematic models;

(b) rate independent’ or frictional models based on plasticity theory and soil
mechadics

(c) ‘rate dependent’ or collisional models based on the kinetic theory of gases.
Before discussing some features of these models, we note that none of them is wholly
satisfactory or even superior to the others in all respects. Perhaps this reflects the
present level of development of the theory.

Kinematic models are ‘incomplete’ in the sense that they provide no information
about stresses. Nevertheless, they havc ‘been reasonably successful in predicting
velocity profiles in the ‘converging-flow’ zone of the flat-bottomed bins (Tiiziin &
Nedderman 1979). They will not be pursued here, as it is not clear how they should
be modifiéd to account for density variation, and to predict the stress field.

Frictional models have been in use for over two decades. The results of these
studies show that the models can predict some, but not all, of the phenomena
observed when granular materials flow through hoppers and bunkers (see for
example, Blair-Fish & Bransby 1973 ; Spink & Nedderman 1978; Meric & Tabarrok
1982; Bridgwater & Scott 1983 ; Jackson 1983 ; Michalowski 1984 ; Nedderman 1988).

Apart from the pioneering work of Bagnold (1954), colhs1onal models have been
explored largely from the 1970’s onwards. They can predict some features of plane
shear between parallel plates, and of flow down inclined planes (Ackermann & Shen
1982; Savage 1983). More recently, hybrid frictional-collisional models have been
developed and applied to these problems, with encouraging results (Sayed & Savage
1983; Johnson & Jackson 1987). Both the collisional and frictional-collisional
equations are formidable, and have yet to be used for two-dimensional problems such
as bunker flow.

In view of the above discussion, attention will be confined to frictional equations.
For an account of the physical motlvatlon behind these equations, sec for example
Jenike (1964 a), Schofield & Wroth (1968) Atkinson & Bransby (1978), and Jackson
(1983). Even though they are older than their collisional counterparts, and have been
used more frequently, the present status is such that there is still ample scope for a

detaqed examination of certain aspects.
It

2.3. Frictional constitutive equations

Frictional equations are composed of two elements namely yield conditions and flow
rules Tt is assumed that the flowing materlal satisfies a yield condition of the form
(Naylor 1978)

Fyo,p) =0, (4)
where Fj, is a scalar function of the stress tensor ¢ and a ‘hardening parameter’ u. The
hterature contains several choices for x4, such as the plastic work (Hill 1950, p. 25),
the plastic volumetric strain, or equivalently, the density (Roscoe, Schofield &
Wroth 1958; Roscoe & Burland 1968; Zienkiewicz, Humpheson & Lewis 1977;
Naylor 1978), and the total plastic strain (Hlll 1950, p. 30; Desai & Siriwardane 1984,
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p- 379). Here we set 4 = p, the bulk density, in keeping with the critical-state theory
of soils (Schofield & Wroth 1968; Jackson 1983). Assuming that the material is
isotropic, (4) may be rewritten as

F(0,,0,,04p)=0, (5)

where F, is a symmetric function of the principal stresses o,, o, and o, (Hill 1950,
pp- 15, 16).

The yield condition does not directly give any information about the kinematics
of motion at yield. This is provided by the flow rule. The plastic potential flow rule
assumes that the rate-of-deformation tensor depends only on the stress tensor and a
hardening parameter, such as the bulk density. Under this assumption, it can be
shown that the principal axes of stress and rate-of-deformation or strain-rate tensors
coincide (Hunter 1983, pp. 136, 137). This is called the coaxiality condition (Mroz &
Szymanski 1978; Spencer 1982; Jackson 1983).

In terms of principal values, the plastic potential flow rule for an isotropic material
is generally assumed to be given by (Drucker & Prager 1952; Mroz & Szymanski
1978 ; Jackson 1983 ; Hunter 1983, p. 481)

0@, .
do,’

(2

¢, = A t=1,23, (6)
where ¢,, ¢,, and ¢, are the principal compressive strain rates, i.e. the principal values
of the rate-of-deformation tensor, defined in the compressive sense, @,(0,, 05,03, p) i8
a scalar function called the plastic potential, and A is a scalar factor of
proportionality. Sinee A has to be determined as a part of the solution, (6) constitutes
only two independent relations between the principal strain rates, the principal
stresses, and the density. For a discussion of other types of flow rules, see Mroz &
Szymanski (1978) and Spencer (1982).

For plane flow, it is easy to show that one of the principal axes of the rate-of-
deformation tensor must be perpendicular to the plane of flow. Consequently, the
other two principal axes, say the ¢, and ¢, axes, must lie in the plane of flow and, on
account of coaxiality, two of the principal stress axes, say the o, and o, axes, are
similarly disposed. Since ¢, = O for plane flow, (6) implies that

0@,
—=0. 7
. (7)
Using (7) to eliminate oy, (5) may be rewritten as
Fy(o,,0,p) =0. (8)

An illustration of this procedure is given in Prakash & Rao (1988).
It is convenient to express the principal stresses in terms of the invariants

o=4§0,+0y); T=3(0,—0y); oy =0y (9)

which are called the mean stress and the deviatoric stress, respectively. In terms of
o and 7, the yield condition for plane flows (8) takes the form

f(T707p)=ﬁ;(U+T>U_T’p)=0‘ (10)
Similarly, the flow rule (6) may be rewritten as
0.

C; /\ao_i, 1=1,2, (11)

2 FLM 225
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where Q,(a,, o5, p) is a ‘two-dimensional ’ plastic potential which is obtained from the
‘three-dimensional’ plastic potential @,(c;,0,, 05, p) by using (7) to eliminate o,.
Introducing an alternative plastic potential g(7, o, p), defined by

q(1,0,p) = Qylc+71,0—7,p) (12)
and the angle of dilation v (Roscoe 1970), defined by

o (e t6)
siny = ——*+—%, 13
(e )
the flow rule for plane flows (11) may be rewritten as
: (Og/00)
siny = ————- 14
(@q/or) )

In polar coordinates, the coaxiality condition takes the form (Jackson 1983; Prakash
& Rao 1988)
Jvg 100, v,

. v, 1w, v
COSQY[E-{_raH 7]—s1n2y[57— ey 7]—0, (15)

where 7y is the angle that the major principal stress axis makes with the
circumferential direction (figure 1). Similarly, (13) may be rewritten as

ov, 1dv, v, . [0v, 10y, | _
0082’}’[5-}-760‘}'7] smv[ ]—0. (16)

Equation (16) is the flow rule for plane flows, with sinv given by (14).

The specific forms used here for the yield condition and the plastic potential will
now be described. The choice of forms is guided to some extent by the critical-state
theory of soils (Roscoe et al. 1958; Schofield & Wroth 1968; Atkinson & Bransby
1978; Jackson 1983). Central to this theory is the concept of ‘critical’ states, which
permit isochoric deformation at constant values of o and 7. The value of the mean
stress o at a critical state, henceforth denoted by o, is found to be a function of the
density p. Noting that the yield condition (10) may be represented by yield loci or
contours of constant p in the (o,7)-plane, and assuming that these loci are similar in
shape (see for example Roscoe et al. 1958), (10) may be rewritten as

T [¢2
= —h(x) =0; = .
I=Gp M =0 a=00

(17)

The yield condition (17) maps as a single curve in the (a,7/0.)-plane, with the
critical state given by the point a« = 1,7/0, = k(1). The segment of the yield locus
with & < 1 is e~lled the dilation branch, since it is found that for stress states in this
segment, deformation is accompanied by a decrease in density. Similarly, the
segment with & > 1 is called the compaction branch, since deformation leads to an
increase in density.

The functions o.(p) and h(a) are taken to be

I o—
oo(p) = Pacxp [—A”—;”—] (18)
1
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or equivalently 1_ I,—AIn [ﬁ] (19)

] a
and h(a) = sing[na—n,(@)"™]; n,=n—1, (20)

where p, is the atmospheric pressure, used as a convenient non-dimensionalizing
parameter (since wall stress in laboratory-scale bunkers rarcly exceeds p, in
magnitude, Bridgwater & Scott 1983). The parameters 7;, A,, » and the angle of
internal friction ¢ are material parametcrs. Equation (18) is taken from soil
mechanics litcrature (see for example, Atkinson & Bransby 1978, pp. 190, 191), while
some justification for (20) is given in our earlier work (Prakash & Rao 1988).

Turning to the choice of the plastic potential q, we note that (14) represents an
‘associated’ flow rule (Naylor 1978) if

q=/ (21)

where f is the yield condition. Otherwise it represents a ‘non-associated’ flow rule.
The following points may be noted regarding these two types of flow rules: (a) data
on the stress-—strain behaviour of clays such as Kaolin and Weald clay (Roscoe &
Burland 1968) support the use of the associated flow rule for the compaction branch
of the yield locus, (b) the behaviour of dense specimens of sand (Lade & Duncan 1975 ;
Bolton 1986) suggests the use of a non-associated flow rule for the dilation branch,
(¢) the dilatancy of certain rocks can be modclled using the associated flow rule for
the dilation branch (Gerogiannopoulos & Brown 1978), and (d) by definition, the rate
of dilation must vanish at a critical state, regardlcss of the choice of flow rules. Thus
solutions obtained with associated and non-associated flow rules are likely to be close
together in the vicinity of critical states.

The above discussion suggests that the choice of plastic potentials depends on the
nature of the material, and, for a given material, on whether it is compacting or
dilating. To simplify the analysis, and to avoid switching frequently between the two
types of flow rules, only one will be used for both the branches. At present, very little
is known about the nature of solutions to bunker problems, under either type of flow
rule.

We start with an associated flow rule, given by (14), (17)—(21), and later modify it
because of computational difficulties. As discussed later, the modified equations are
effectively equivalent to those based on a non-associated flow rule.

2.4. Equations in dimensionless form
It is convenient to express the stress components in terms of the Sokolovskii
variables o, 7 and y:
O, =0—TC082Y; 0O,=—T8IN2Y; 0y = 0+7C082Y, (22)

where o and 7 are defined by (9), and vy is the orientation of the major principal stress
axis relative to the circumferential direction.
Introdueing dimensionless variables

P v, Vs o
=, p*= , vf=—Ty, of=—4, o*=——-,
L Pmax (gL )E ’ (gll )f Pmax gL
T o
H=—1-—— oF= £
Pmax9l’ ° PraxgL
where L is the half-width of the bin (figure 1), p ., = P € max> and € .y is the volume

2.2
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fraction of the solid corresponding to close packing of uniform spheres (=0.74;
Brown & Richards 1970, p. 17), the basic equations (1)—(3) and (15), (16) may be
written as follows:

1
Continuity e éri* (r*p*v¥) +r-1": a%(p*v;‘) =0 (23)

Momentum balance (r-component)

wF o vFowr wH| 1 0 1 0 .
K|k Zr 70 7 PO A T ok gk ok = *
p [v, ar*+r* 20 e ]+r* E‘)r*[r (c*—1 cos2‘y)] p 649[T sin 2y]
o*+T1*cos2y

————————L+p*cos@ =0; (24)

r¥
Momentum balance (6-component)

%* %* %* * %k
p*[v*%+v—oavo+vr vo]_ ! i[(7‘*)2'r*sin2y:|

T* r*0  r* (r*)? Or*
+i£[0'*+'r*cos2y]—p*sin0=0' (25)
r* 06 ’

. dvF 1 ovF of] . o 1wy of]
Coaxiality 00827[6r*+7'_* 20 —r—*]—sm2y[ar* 0 o+ =0; (26)

vy 1 ovy of| . [OvF 1wy of|
Flow rule cos 2y [E‘)r* e ¥+r_*] siny [ar_* ey r_*] =0; (27)

. f T* . n
Yield condition f*= W—sm Plna—n,(x)®™] =0, (28)
o o*

where a= = (29)

Ip*—1
Ug(p*)=ﬂ*exP[ll)\T:|; ﬂ*E Pa ; r=1—ies,max; ’\=’\1€s,max; (30)

Associated flow rule sinv = nsin @[1 — (a)'/™]. (31)

2.5. Structure of the basic equations

The basic equations constitute a set of five first-order, quasi-linear partial differential
equations in the dependent variables o*, v, p*, ¥ and v}. They may be written in
matrix form as

ow B ow

a1‘_*+7'_*a_0+c=0 (32)

where wT = (p*,v¥,v¥, 0*,v), A and B are matrices whose elements are functions of
w, and C is a column vector containing the non-homogeneous terms in (23)-(27).

The classification of the system (32) is based on the nature of the roots
(eigenvalues) of the characteristic equation

det (B—2A) = 0. (33)



Flow of granular materials through a bunker 31

The system (32) is said to be hyperbolic (Courant & Hilbert 1962, pp. 173, 425;
Prasad & Ravindran 1985, pp. 152, 153) if (33) has five real roots {4;}, and there are
five linearly independent eigenvectors {/;} such that

IMB—A,A)=0; j=1,5. (34)
In the present case, (33) has five real roots, only three of which are distinct.
Denoting the distinct roots by A,, A, and A,, and introducing angles ,, defined by

cotyr,=4A;; i=1,3, (35)
it is found that

Y = cot™ (v} /v2);  u = —[y—(dn—)] (double root);

¥, =—[y+(n—3v)] (double root). (36a,b,c)

It is also found that there are only three linearly independent eigenvectors
corresponding to these eigenvalues. Hence the system is not hyperbolic; indeed it
cannot be classified as any of the standard types.

However, some insight into its structure can be gained by decoupling the ‘stress’
equations (24) and (25) from the ‘velocity’ equations (23), (26), and (27), as follows.
If the density and velocity fields are assumed to be known functions of position, it
can be shown that (24) and (25) are hyperbolic. Similarly, if the mean stress o* and
the orientation y of the major principal stress axis are assumed to be known
functions of position, (23), (26), and (27) are also hyperbolic. Thus we have two sets
of hyperbolic equations, which, when coupled together by the inertial terms in (24)
and (25), lead to a non-hyperbolic system. This conclusion is based on the use of an
associated flow rule; as discussed later, non-associated flow rules may permit the
hyperbolic character of the stress and velocity equations to be retained by the
complete system of equations.

From a computational viewpoint, a non-associated flow rule appears preferable, as
it leads to a hyperbolic system for which standard numerical methods are available.
However, it was difficult to guess a priori the form of the non-associated flow rule.
Further, having used an associated flow rule in our earlier work on a one-dimensional
problem, we wished to study its performance in two-dimensional flows. After most
of the present work was completed, a paper by Bolton (1986) was spotted, which
provides a simple correlation for the angle of dilation v. This is effectively equivalent
to a non-associated flow rule, and merits consideration in hopper flows.

As explained above, we start with an associated flow rule. Though the system is
not hyperbolic, its ‘quasi-hyperbolic’ nature suggests that nuimerical methods
devised for hyperbolic systems may be adapted to generate solutions to initial-
boundary-value problems. This is discussed in detail in §4.

3. Problem formulation
3.1. Introduction

In view of the structure of the basic equations, it is natural to formulate an initial-
boundary-value problem, with initial conditions specified along a curve spanning the
bunker, and boundary conditions specified along the walls. The experimental work
reported in the literature provides valuable clues towards the specification of initial
and boundary conditions. As discussed in §1, the following features may be noted:
(i) In the bin section, the material descends in plug flow, with an approximately
constant density. (ii) There is a transition region between the bin and the hopper
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Fraure 3. Shock separating active and passive regions.

sections, across which the density, velocity, and stresses change sharply. (iii) The
state of stress is believed to be ‘active’ above the transition region and ‘passive’
below it. (iv) The normal stress on the bin walls tends to attain a constant value on
moving downwards from the free surface. The data of Clague (quoted in Blight 1986)
suggests that wall stresses in the bin section are largely unaffected by whether the
material is flowing or not. However, for flat-bottomed bins, the data of Tiiziin,
Adams & Briscoe (1988) suggest that dynamic wall stresses exceed static values.
These observations will now be used to formulate suitable initial and boundary
conditions. It is convenient to use Cartesian coordinates (z,%) in the bin, and polar
coordinates (r,f) in the hopper, as indicated in figure 1.

3.2. Boundary conditions

As in earlier works (see for example Brennen & Pearce 1978), it will be assumed that
the solution is symmetric about the centreline 8 = 0 (figure 1). Therefore, the normal
component of velocity must vanish along the centreline, i.e.

v (x=0,y9) =0 (bin); w,(r.0 =0)=0 (hopper), (37)

where v, is the component of the velocity vector in the x-direction. Similarly, the
shear stress must vanish, i.c.

g.=0,y) =0 (bin), (38)
o,r,0 =0)=0 (hopper). (39)
Here o,, is the relevant Cartesian component of the stress tensor. If y is the

orientation of the major principal stress axis relative to the horizontal direction
(figure 3), then in terms of Sokolovskii variables

Oy =0+TC0827; 0,, =—7sin2y. (40)
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Using (22) and (40), it follows that (38) and (39) have two solutions each:
(i) =0 (which is called the passive state),

(i) y =1r (which is called the active state);

and (i) vy =0 (passive state); (ii) y=1n (active state).
In view of the experimental observation (iii) in §3.1, we set
P@=0,9)=3m (bin); ¥(r,6 =0)=0 (hopper). (41)

The location of the exact point on the centreline where the switch in the orientation
of the o, axis occurs is discussed later.

Let us now consider the boundary conditions along the hopper wall. As the normal
component of velocity must vanish along the wall, we have

vy(x=L,y)=0 (bin); ver,0=20,)=0 (hopper). (42)

The other condition follows from the usual assumption (Brennen & Pearce 1978;
Savage & Sayed 1979) that the ratio of the shear to normal stress is a constant along
the wall. If 7" and N are the shear and normal stresses, respectively, exerted on the
powder by the wall, (40) imply that on the bin wall

T — 3 A
T _—0,_ 78in 2y __ tansd, (43)
N o, o+ T1cos2y
while (22) imply that on the hopper wall,
T_—oy__r7sin2y _ tan d, (44)

N o4 o+7cos2y

where J is a material constant called the angle of wall friction.

The value of ¢ is usually determined from experiments conducted in a Jenike shear
cell (Jenike 1964 a; Brown & Richards 1970, p. 113). Though the state of the material
in the shear cell is not well defined, previous investigators have used this value of §
in the boundary conditions (43) and (44). It was found that the dependence of the
predicted discharge rate on the wall roughness was qualitatively similar to that
observed, at least for steep hoppers. However, most of the earlier analyses were
confined to incompressible flow. It is not clear whether (44) can be used intact for
compressible flow. The work of Tiiziin et al. (1988) sheds some light on this point.
They have attempted to predict the angle of wall friction ¢ in a bin, from single-
particle frictional properties and a geometric description of the particle assembly
near the wall. For particles with a relatively rough surface, such as mustard seeds,
¢ is independent of the bed height and the bulk density. For particles with smoother
surfaces, such as glass beads, § depends on the bulk density. To simplify the analysis,
it will be assumed here that & is a constant.

Using the yield condition (17), (43) and (44) reduce to

singsin2y, R ()]
1+singcos2y, tand; sing = a ’ (45)
y(x=L,y) (bin)
h Y=Ly
where Y {y(r,0= 6.) (hopper). (49)
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Equation (45) becomes identical to the incompressible result when ¢ is replaced by
¢. It follows that (45) has two roots (see for example Horne & Nedderman 1978;
Kaza & Jackson 1982a). These are

. _.|siné . _,|sinéd
Vw = Y, = in+16—1sin l[sinﬁ]; Yw = ¥p = 0 +1sin l[m:l, (47a, b)

where the subscripts ‘a’ and ‘p’ denote active and passive states, respectively. For
the special case of smooth walls, ¢ = 0, and (47) reduce to the corresponding active
and passive values at the centreline, namely y, = i1 and y, = 0. Consistent with the
choice implied by (41), we set

J@=L,y)=7v, (bin); y(r,0=6,)=y, (hopper), (48)
where 7y, and y, are defined by (47).

3.3. Initial conditions

In view of the experimental observation (i) in §3.1, we might choose the initial curve
to be a horizontal line, located some distance above the bin—hopper transition, and
specify the following initial conditions:

v
x __ . K —
—Z.=0; o=

* = constant = p*; ¥ = .
Y Po z (gL)E

v
1 = constant = —u. (49)

(gLy

Values of o* and 7 must also be specified along the initial curve. To do this, it may

be noted that the mass balance, the coaxiality condition, and the flow rule are

identically satisfied by a solution of the form (49), and the momentum balances
admit an exact soluition of the form

o* =o*x/L); y=7y(x/L). (50)

Here the functions o*(z/L) and J(x/L) can be determined by integrating ordinary
differential equations, as discussed in Appendix A. Note that the stress field so
obtained is independent of the magnitude of the plug flow velocity u, in accord with
experimental observations:

In the static case, Horne & Nedderman (1978), Wilms & Schwedes (1985) and
others have integrated the force balances in the bin, using the assumptions of
incompressibility and the Mohr—Coulomb yield condition

T* = o*sin ¢. (51)

Their computations have shown that the stress field (50) is approached asymp-
totically on moving downwards from the free surface of the fill. It seems
reasonable to expect that this feature will be preserved when (51) is replaced by the
yield condition (28).

3.4. The transition region

The above discussion suggests that (49) and (50) constitute a plausible set of initial
conditions, which are compatible with the experimental observations (i), (iii) and (iv)
in §3.1. It remains to account for observation (ii). This is a difficult problem, for
which a satisfactory treatment is not available at present. Some attempts are
indicated below.

Though the initial conditions (49) and (50) constitute a particular solution of the
basic equations, this solution is not valid in the hopper section as it does not satisfy
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the appropriate boundary conditions. The latter imply that the velocity and stress
fields are discontinuous both at the bin-hopper transition, and at the point on the
centreline, as yet undetermined, where the state of stress switches from active to
passive. It seems unlikely that a solution can be found that is continuous in the
interior of the region bounded by the centreline and the wall, and discontinuous only
at the boundaries. Hence the possibility of a discontinuous solution must be
considered.

In hyperbolic systems, discontinuous solutions are permissible, but only in regions
where characteristics of the same family cross or overlap. The characteristics defined
by (36a) are streamlines, and hence do not overlap, whereas those defined by (36, ¢)
may overlap. The slopes of the latter depend on y and v, and » in turn is a function
of @ = ¢/a,(p). Thus the slopes are not known a priori. However, prescription of «
suffices to determine them, both at the centreline and the wall. With the yield locus
used here, the values of a must lie in the interval [0, a,,.], where

| S
=1 .
max [ +oen ¢]

For a > a,,,,, there are no real characteristics, save the streamline. (In all the
computations discussed here, « was found to be <a,,,.) With this interval for a, the
orientations of the characteristics may be plotted as a function of .

For typical parameter values, it is found that at the centreline, the characteristics
of one family overlap, while those of the other family form a fan. On the other hand,
at the bin—hopper transition, the inverse situation prevails for most values of «. This
is discussed in greater detail in Prakash (1989).

Given the complex behaviour exhibited by the characteristics, it is not clear how
one should proceed. Therefore, it is helpful to first summarize earlier attempts. These
may be divided into two groups: (a) where attention is confined to the stresses in the
transition region, and (b) where only the kinematics of this region are considered. The
above two groups are discussed in turn below.

Let us first consider the stress aspects of the transition region. All the work
described here is based on incompressible powders obeying the Mohr—Coulomb yield
condition. With these assumptions, the force balances constitute a hyperbolic system
whose characteristics are inclined at angles + (3n—1¢) relative to the o, axis. In the
‘differential slice’ approach of Walker (1966) and Walters (1973), the transition
region was idealized as a horizontal line, which separated an active region above from
a passive region below. The requirement of continuity of the mean normal (vertical)
stress sufficed to construct the stress field below the transition. In a more rigorous
analysis, Jenike & Johanson (1968) made use of the fact that one family of
characteristics forms a fan at the bin—hopper transition. Using this feature, the value
of N,/N, could be estimated, where N, and N, denote the normal stresses exerted on
the hopper and bin walls, respectively, at the transition point. Subsequently,
Bransby & Blair-Fish (1974) and Horne & Nedderman (1978) noted that the other
family of characteristics overlap at this point. Hence an alternative solution
involving a discontinuity or shock issuing from the transition point into the bunker,
is also possible. Bransby & Blair-Fish (1974) computed N, /N, for both types of
solutions, but did not determine the shape of the shock at interior points. In fact, as
noted by Horne & Nedderman (1978), it is impossible to build the shock into the
bunker without prescribing additional information. Thus Savage & Yong (1970)
assumed the shock to be a circular arc, and used jump balances or discontinuity
relations (Courant & Hilbert 1962, p. 489; Sokolovskii 1965, p. 100; Slattery 1981,

max
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p. 41) to obtain the stress field on the downstream side. Similarly, Enstad (1975)
assumed a form for the y-field below the shock, and used the jump balances to
determine the shape of the shock.

On the other hand, Horne & Nedderman (1978) used the fan-type solution near the
bin-hopper transition, but found that this would destroy the symmetry of the
solution in the region where the fan intersected the centreline. Symmetry was
preserved by introducing a discontinuity at the intersection of the upper boundary
of the fan and the centreline. This could be continued downwards without making
any additional assumptions, enabling the stress field in the hopper to be found. The
analysis of Horne & Nedderman (1978) is perhaps the most satisfactory treatment of
the stresses in the transition region. However, the peak in the normal stress on the
wall does not occur at the bin-hopper transition, as has been observed (Rao &
Venkateswarlu 1974 ; Clague (quoted in Blight 1986)), but at some distance below it.

Let us now consider the kinematic aspects. If the stress field is assumed to be
known, the coaxiality condition (26) and the flow rule (27) form a hyperbolic system
whose characteristics are inclined at + (i1 —1») relative to the o, axis. Further, if the
angle of dilation v is taken as a constant, the equations are linear; hence velocity
discontinuities can occur only across the characteristics (Shield 1953; Courant &
Hilbert 1962, p. 488). The identification of velocity discontinuities with character-
istics is central to the work of Drescher, Cousens & Bransby (1978) and Michalowski
(1987). For instance, Michalowski assumes that the velocity field changes
discontinuously across a characteristic issuing from the bin-hopper transition, from
plug flow in the bin to one whose velocity vector at the transition is parallel to the
hopper wall. Since the slope of the characteristics depends on 7, he also prescribes a
form for the y-field.

It is evident from the above discussion that there has been no attempt to treat the
stress and the kinematic aspects of the transition region simultaneously. At the
moment, it is not clear how the approach of Horne & Nedderman (1978) should be
extended to incorporate variations in density and velocity. Another approach has
been suggested by R. Jackson (1987, private communication) and by one of the
referees. This requires a jump in stress across a ‘switch surface’, and a jump in
velocity (and hence in density) across a velocity characteristic. Unfortunately, with
the present constitutive equations, a jump in density will in general induce jumps in
both the state of stress and the angle of dilation v. Thus the jump in stress is not
confined to the switch surface alone; further, the slope of the velocity characteristic
is not uniquely defined, since it depends on v. Hence this approach will not be
pursued, even though it is intuitively more appealing than the one used here.
Perhaps the constitutive equations have to be modified before it can be implemented
satisfactorily. Here we adopt the simpler alternative of permitting all the field
variables to change discontinuously across a shock or discontinuity curve, the stress
field from active to passive, and the velocity field from vertical to one compatible
with the boundary conditions in the hopper. Thus the present work represents an
extension of the work of Savage & Yong (1970).

As in their work, jump conditions must hold across the shock (Courant & Hilbert
1962, p. 489; Slattery 1981, p. 41). In the literature, jump conditions have been
derived for two cases: (i) linear hyperbolic systems, and (ii) quasi-linear hyperbolic
systems of conservation laws, which are of the form

0a, , 0,

=0. 2
2t oy T 0 (52)
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Here the a, are vector functions of x,y, and the field variables. The mass and
momentum balances (equations (23)-(25)) may be expressed in the form (52), and
hence there are three jump conditions corresponding to them. On the other hand, the
coaxiality condition (26) and the flow rule (27) are not in conservation law form;
neither are they linear, since y and v are not known a priori.

The difficulty is overcome by specifying additional conditions on the downstream
side of the shock. This ad hoc procedure has been adopted for want of a better
alternative; it is hoped that a more satisfactory treatment will emerge eventually.

It has been tacitly assumed that the basic equations behave like a hyperbolic
system, but this is not strietly true. Their quasi-hyperbolic nature provides some
justification, albeit weak. In addition, it will be seen later that they have to be
modified slightly in order to alleviate computational difficulties, and the modified
cquations are hyperbolic.

The stage has now been set for the construction of the shock, details of which are
discussed below. Since the values of the field variables on its downstream side will be
used as initial conditions for the hopper problem, the shock will be referred to as the
initial curve.

3.5. The initial curve

Referring to figure 3, let n be the unit normal to the shock S, at a point P. For a
stationary shock, the jump mass and momentum balances take the form (Slattery
1981, pp. 25, 41)

Jlpv,]=0; Jpv,v+6-n]=0, (53a, b)

where J[®] = @, — Py, is the jump in any quantity @ on crossing S,v, = n-v is the
component of velocity normal to S, and all quantities are evaluated at the point P.
Henceforth subscripts 1 and 2 will denote conditions on the upstream and
downstream sides of S, respectively. It is convenient to cxpress the stress tensor ¢ in
terms of Sokolovskii variables o, 7 and y (figure 3). Resolving (53b) into components
normal and tangential to the shock, (53) may be written in dimensionless form as

P Vaw — Pl Vne = 0, (54)
P?z)[v:,(z)Jz _,0?‘1)[”:(1)]2 + [0'?‘2) - 0'?‘1)] + ["'?‘2) cos (271;(2) +2¢) _""?‘1) cos (277(1) +2¢¥)] =0,
(55)

and [, vk, Vi — Pl Vo Vi ]+ [T 8in (27 +2¢) — 78, 8in (27, +2¢)] = 0, (56)

where v* =0, /(gL)}; v¥ =v,/(yL)} and v, =t-v is the component of velocity
tangential to S (figure 3). The angle ¥, which gives the orientation of the shock, is
defined as indicated in figure 3.

The upstream variables v}, etc. are assumed to be given by the initial conditions
(49) and (50), i.e. plug flow with an active stress field. In (49), the value of the
constant « is unknown a priort; it will be determined iteratively as described later.

Equations (54)—(56) contain the seven unknowns p,, v¥,,, v8,, 0%, Ty Vo), and
¥, but 73, is related to o, through the yield condition (28). Thus three additional
equations are needed to close the set. Here, these are obtained by making the
following plausible physical assumptions:

(i) On the downstream side of S, the velocity vector is directed radially towards
the apparent vertex of the hopper section. This ensures that the velocity field is
compatible with the boundary conditions (37) and (42). By way of additional
justification, we turn to the experimental observations of Lee ef al. (1974), Bransby
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Fiaure 4. Comparison of the shock profile predicted by the present theory (-——) with the rupture
layer observed by Michalowski (1987) ( ) and the prediction of Michalowski (1987) (—-—). The
parameters ¢ = 32°, 8, =4, = 11°, 6, = 20°, f* = 35, and p¥ = 0.78 are reported in Michalowski
(1987). Here, the remaining parameters are assumed to be: I'=1.34, A = 0.02, n = 1.05, and u =
0.0125.

& Blair-Fish (1975) and Michalowski (1987). With reference to figure 4, these suggest
that the material moves vertically in the bin section, parallel to the hopper wall in
the triangular region bounded by the rupture layers AD and AC and the wall DC, and
radially below AC. Michalowski (1987) concurs with these findings, but his data for
6, = 20° (figure 10 of his paper) can be approximated well by the assumption of
radial flow, even in the region ADC. Thus this assumption may be reasonable for
small values of 6,,; for larger values, a realistic model must allow for two or more
rupture layers, so that a region of flow parallel to the walls can be accommodated.
Here the problem has been simplified by ignoring this region, and considering only
a single rupture layer or shock.

(i) The next assumption is that the material on the downstream side is at a critical
state, i.e.

*
Ty = O Sing; o = ok = Bf*exp [FL/\(”;—I] (87)
P

With the parameter values used, the material on the upstream side is found to be
‘denser than critical’, in the terminology of Schofield & Wroth (1968, p. 21). Hence
it dilates across the shock to attain the critical state (57). Such behaviour is evident
in the radiographs of Lee et al. (1974), Bransby & Blair-Fish (1975), and Michalowski
(1987). However, it is not clear from the literature that downstream conditions
necessarily correspond to a critical state.

It may be noted that assumptions (i) and (ii) have been used earlier by Drescher
et al. (1978), in their analysis of the kinematics of rupture surfaces in hoppers. Using
the above two assumptions together with the jump balances (54)—(56) and the stress
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boundary conditions (41) and (48), the values of all the downstream variables can be
found at both the wall and the centreline, as discussed shortly.

(iii) Elsewhere an additional condition is needed; here we use the ad hoc
assumption that pf, is a quadratic function of 6, which takes on the known values
at 6 = 0 and 6. The basis for this choice is that symmetric solutions of the basic
equations (23)—(27) can be ensured by requiring p*, v* and o* to be even functions
of 6, and v# and 7y to be odd functions of 8. The proposed functional form is merely
a simple example of an even function. Clearly, other choices are possible. Indeed, this
non-uniqueness is a shortcoming of the present theory.

Let u and w,,, denote the magnitudes of the vertical velocity in the bin section and
the radial velocity in the hopper section, respectively. Then the normal and
tangential components of velocity are given by

vy = —usiny; vk, =ucosy (58)
and Vpgy) = —Ug Sin (O+Y); vk, = ug, cos (O+y). (59)

Using the jump mass balance (54), u,, may be eliminated to get

_ P& usiny 60
e plhysin(0+y) (60)

With the help of (58)—(60), the jump momentum balances may be rewritten as

[ %
Py utsin®yr @— 1] +[o8) —ah) ) +78) cos (27 4y +2¢) =78, cos (274, +2¢)] = 0

LP(2)
(61)
and

—pl, utsin®y _z(l) cot (6 + ) —cot !,//] + (18, Sin (29 o) +2¢) — 78, 8in (274, + 2¢)] = 0
@
(62)

All the downstream variables at the wall and centreline are determined as follows.
At the centreline, 6 = 0, y,, = {n and 7,, = 0. Hence (62) reduces to

[—gp(l) (ﬁ‘” )+r;*2, +r;*1,] sin 2y = 0. (63)

@)

Since the expression in square brackets does not vanish in general, (63) implies that
Yy=0; or yY=in (64)

The root i = 0 corresponds to a shock which is vertical at the centreline. In this
case, the value of u, (6 = 0) is arbitrary, since the jump mass balance is identi-
cally satisfied at 6 = 0. Of course,  + 0 for 6 > 0, and u,,(6 = 0) could possibly
be set equal to limg,[u,)(0)]. Here we choose the other root, yr = imn, which
corresponds to a shock which is horizontal at the centreline. This choice permits
U2)(0) to be determined for all values of 6,0 < 8 < 6,,. On setting ¥ = i in (61) and
using (41) and (57), a nonlinear equation results for p, = p#,(6 = 0), which is solved
iteratively using the Newton-Raphson method. At the wall, 8 =6, 7, = 7,, and
Y@ = Yo+ 0y Hence (61) and (62) are two nonlinear equations for p,, = p&,(0 = 0,,)
and ¥, = (6 = 6,;), which are also solved iteratively using the Newton—Raphson
method.
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At interior points 0 < 8 < 6, p{,, is assumed to be given by

6 2
Py = Po+ 1w =Pl (;) (65)
as indicated earlier. On substituting for pf, from (65) into (61) and (62), these reduce
to a pair of nonlinear equations, which are solved iteratively for 7, and . Finally,
the shape of the shock is found by integrating the equation

*

Ti*%%=—cot (0+y) (66)
subject to the initial condition r*(0 = 0,) = r} = 1/sinf,. At every stage of the
integration, the value of i is taken from the solution of (61) and (62).

This completes the specification of the initial curve, and the initial data along it.
As mentioned earlier, the velocity data depend on u, the magnitude of the plug flow
veloeity in the bin section. To determine u, an additional ‘exit’ condition must be
specified. This is discussed below.

3.6. The exit condition

Following Savage (1965) and Davidson & Nedderman (1973), it has been common
practice (Brennen & Pearce 1978; Savage & Sayed 1979; Kaza & Jackson 1982q;
Meric & Tabarrok 1982) to assume that the material in the hopper is bounded from
below by a traction-free surface spanning the exit slot. Along this surface, the shear
and normal stresses vanish; below it, the material is assumed to fall freely under
gravity, with zero frictional stresses. For cohesionless materials, the mean stress o*
vanishes along this surface. In particular, we require

Kk — ok — =0- * — E = ——D
o¥r¥*=r¥0=20,)=0; re_Lﬂ2Lsin0w' (67)
Here r, is the radial coordinate corresponding to the hopper exit (figure 1), and D is
the width of the exit slot (figure 3).

It appears that (67) suffices to determine u — guessing a value for «, and integrating
the basic equations down the hopper section, it may be checked whether (67) holds
to within a prescribed accuracy. If not, the procedure may be repeated with another
value of u. However, there are two obstacles to this approach, one related to the
unattainability of the exit condition (67), and the other to the unrealistic
consequences of this condition. These are discussed below, followed by an alternative
proposal for the exit condition.

(@) The momentum balances (24) and (25) are singular on the traction-free surface
o* = 0, since o* multiplies all the derivatives of y. Hence it is extremely difficult to
approach this surface from above, at least with the present numerical method. This
problem was encountered earlier by Savage & Yong (1970) and Kaza & Jackson
(1982a) in their incompressible analyses of hopper statics and hopper flow,
respectively.

{(b) In the incompressible case, it has been shown (Kaza & Jackson 1984) that
material on the downstream side of the traction-free compacts if

Zu >0
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where w is the distance measured along the upward normal to this surface. The
existing approximate solutions (see, for example, Savage 1965; Brennen & Pearce
1978; Savage & Sayed 1979) predict a traction-free surface which lies above the plane
of the exit slot, and along which the above inequality holds. Thus particles below this
surface tend to press against each other, leading to a buildup of frictional stresses.
This is inconsistent with the assumption of free fall with zero frictional stresses, and
hence the exit condition (67) must be abandoned. This conclusion is reinforced by the
density measurements of Bosley ef al. (1969), Van Zuilichem et al. (1974), and Fickie
et al. (1989), which show a strong dilation, rather than compaction, near the exit slot.
Indeed Fickie et al. (1989) have suggested that there is no traction-free surface of the
type discussed above. If so, the constitutive equations may have to be modified
suitably, such that at the exit plane, o* > 0 except possibly at the edge of the slot,
i.e.at (r* = r¥* 6 = 0,). As the form of the modified constitutive equations is not clear
at present, the existing ones will be retained, and the exit condition will be altered
instead.

So far, the discussion has been confined to the case of incompressible flow in the
hopper scction. It was conjectured (Kaza & Jackson 1984) that if this assumption
were relaxed, dilation of the material might be strong enough to prevent compaction
on the downstream side of the traction-free surface. In the present work, this could
not be checked because of numerical problems encountered in approaching o* = 0.
However, in the special case of compressible flow through a hopper with smooth walls
and radially directed gravity, there is no such singularity in the basic equations.
Hence they can be integrated all the way to the traction-free surface, as discussed
elsewhere (Prakash & Rao 1988). Using the results presented there for three
materials, it can be shown that the exit condition is still inconsistent, in spite of
dilation above the traction-free surface.

In view of the problems associated with a traction-free surface, the exit condition
(67) will be abandoned in favour of an alternative one proposed by Kaza & Jackson
(19825h). This assumes that the hopper terminates at a ‘surface of free fall’, or ‘exit
shock’, which spans the exit slot. The field variables change discontinuously across
it, attaining a state of vertical velocity and zero frictional stress (o* = 0) on the
downstream side. This ensures that the material dilates as it falls vertically under the
influence of gravity, while o* vanishes throughout. Thus the inconsistency referred
to earlier is avoided. However, a new problem arises, as explained below.

It can be shown (Kaza & Jackson 1982b) that the shape of the exit shock is
determined by integrating the equation

1.dr* _ tany = [c* sin 6 —7* sin (2y + 0)]+ p*v}[v¥ sin 6 + v} cos 0]
r* df " [o* cos O +17* cos (2y + 6)] + p*v¥[v* sin O+ v} cos 6]

subject to the initial condition r*(0,)=r*. Here ¥’ is the angle measured
anticlockwise from the radial direction to the upward normal to the shock.

For any specified values of the exit radius r} and the bin velocity u, the exit shock
can be constructed using (68). While r¥ is known a priori, u is not; hence the exit
condition does not determine % uniquely. However, an upper bound on % may be
constructed by appealing to the hyperbolic nature of the basic equations, as
indicated below.

The slope of the shock depends on the values of the upstream variables, which are
known only within the domain of determinacy ABC of the exit slot AB (figure 5). At
the point B, if the shock lies outside ABC, as in figure 5, it cannot be continucd
towards the centreline. It can be shown that this first occurs when u exceeds a critical

(68)
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Ficure 5. Domain of determinacy of exit slot: AB, exit slot; AC, BC, ‘outermost’ characteristics
at C; BD, tangent to the shock at B; BI, hopper wall. Inset: typical characteristics BC, BE, BF,
BG, and BH corresponding to the roots yr,, ¥,, ¥,, ¥,, and ¥;, respectively of (83).

value u,; with 4 = u,, the exit shock is tangential to the characteristic BC at the
point B. In all the cases investigated here, this suffices to ensure that the shock lies
within ABC (see, for example, figure 20). Thus the shock can be constructed for any
value of u < u,, and u, is an upper bound on the discharge rate for all solutions
satisfying the exit condition at r* = r¥.

4. Solution procedure

The procedure for numerical integration of the basic equations (32) will now be
described. As the initial curve defined by (66) is not a circular arc in general, it is
convenient to use new coordinates (¢, %), defined by

_In[1-§(*0)] 0
= Thi-gg " ey

w

(69)

where £, = £(r¥,0,). The function §(r*, 6) is chosen so that £ = 0 coincides with the
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initial curve (66) and £ = 1 corresponds to r* = 0. The specific form used for £(r*, 8)
is given in §5.1.

Computations were originally performed with £ and % as the independent
variables. While using a difference scheme and marching downwards from the initial
curve, it was found that the step size A£ had to be decreased as r* decreased, in order
to ensure convergence. On the other hand, a constant value of At sufficed when ¢ and
n were used as the independent variables.

Equations (32) may be regarded as comprising two sets of hyperbolic systems, as
noted in §2.5. Considering the velocity equations (23), (26) and (27) first, there are
three characteristics C;, i = 1, 3, whose slopes ¥, are given by (36). The characteristic
curves may be represented in parametric form by

dt) _ -1 { +cot v, ag}
(5,- (I—§In[1—gJlor=" r* 06

(‘—12) _ oYy g

ds/, r*6,’

(70)

Along these curves, the compatibility conditions, or equations in characteristic
normal form, may be found using standard techniques (Courant & Hilbert 1962,
pp. 424, 426; Prasad & Ravindran 1985, pp. 151, 153). They take the form

(i) along C,

v*Dlp*—- p*sinvsin2y, |D,v¥ [ p*sinv(cos2y,—1) |D, v}
" Ds cos (2y+2¢,)—sinv| Ds cos (2y+2yr,)—sinv| Ds

_ [p*sinv[v}(cos 2y, +1)—vf Sin?lﬁl]], (71)
- r*[cos (2y +2¢,) —sin V] ’
(ii) along C,,C,

* 2
—2vF cos? ¢,

r¥

D, (dt\ o (dy\ ©
where Ds— (ds)i at+(ds> 677 (73)
is the directional derivative along the ith characteristic.

Turning to the stress equations (24) and (25), the characteristics are given by
(360, ¢), and the compatibility conditions take the form

. * D * * o7 .
sin2s/fiD]§,Z“’+2sin2¢,~ i =[v" Sin 2y ]; i=2,3, (72

in2
[cos (2y + ;) —sinv cos l/fi] A [27%sin ;] ’ Y [g; S(;:S l/l/::]
or* 1 ap vo

*o¥ sin (2y + )

- dp* r*cosy;In(1=E,) @

%k, 2 Dlv: p U;‘ * o) 2 * 2
—p*of cos (2y+) 5~ L8 [of sin (2y+y) —of cos 2y +)]
*
+M p*cos (Zy+y,+0); i=2,3, (74)

r*
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FigURE 6. Grid for the inverse marching scheme.

along the C, and C, characteristics. Equations (74) are not true compatibility
conditions, since they contain the derivatives 0/0t and D, /Ds in addition to D;/Ds.

Having obtained the compatibility conditions, it remains to discuss the numerical
method used to integrate them. This is based on an inverse marching scheme (Zucrow
& Hoffman 1976, p. 336), wherein characteristics are drawn backwards from any
point P(¢, 7) at which the solution is desired, to the previous ‘time’ level (t — At) where
the solution is known (figure 6). Along the characteristics, which are approximated
by straight line segments, the compatibility conditions are integrated using a
modified Euler predictor-corrector method. The reader is referred to Zucrow &
Hoffman (1976, p. 341) for a detailed discussion of this method.

At the point of intersection of the initial curve with the wall, both initial and
boundary conditions have been specified for v, and y. This invariably leads to
discontinuities in the values of their derivatives, which propagate into the hopper
along characteristics issuing from this point or corner. The inverse marching scheme
used here cannot follow these discontinuities as it does not track specific
characteristics. In retrospect, it appears that a direct marching scheme (Zucrow &
Hoffman 1976, p. 333), wherein some characteristics are tracked, may have been
more suitable. However, this scheme also has two defects: (i) it leads to non-
uniformly spaced grid points, which are more difficult to handle, and (ii) most of our
results are based on a modified set of equations (§5.2.2), for which two characteristics
issue from the corner into the hopper, and cannot be tracked simultaneously. 1t is
hoped that this issue will receive greater attention in future.

The peculiar nature of our equations warrants a few additional remarks. Referring
to figure 6, suppose the values of all the field variables are known along the line
t =1, and it is desired to find the solution at the point P. The velocity compatibility
conditions (71) and (72) are first integrated to obtain p*, v} and v} at P. Using the
value of p* at P, the stress compatibility conditions (74) are then integrated to obtain
o* and v at P, treating all the terms on the right-hand side as the non-homogeneous
part of these equations. This implies that the derivatives D, »f/Ds, D, v}/Ds and
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0p* /0t are required at the points L, M and N in the predictor stage, and, in addition,
at the point P in the corrector stage of the integration. Here, they are estimated by
using a backward difference scheme. For example, at point P

* *_ ok o * ok * ok ok
ap _Pp—Pum. D, v? e Vg, D, v5 _ vge—iq
,

ot At Ds As, = Ds  As

(75)
where As, is the distance PQ (figure 6). Clearly (75) cannot be used for points on the
initial curve ¢ = 0. Here it is assumed that

2p*
ot

*
_ D, v}
Ds

*
_ D, vy

t=0 Ds

=0. (76)

t=0

t=0

Since the initial conditions correspond to a critical state, and since the inertial terms
arc small in the vicinity of the initial curve, (76) is perhaps not unreasonable.

As a test casc, the problem of compressible low through a hopper with smooth
walls and with radially directed gravity was examined. Here the basic equations
reduce to ordinary differential equations, which were integrated using a semi-implicit
Runge-Kutta method (Prakash & Rao 1988). The results were found to be in good
agreement with those obtained using the present difference scheme.

5. Results

Results will now be presented from two angles: (i) to illustrate some aspects of the
theory, and (ii) to compare with experiments. In case (i), computations arc largely
confined to Leighton Buzzard sand. Here the values of the material parameters in the
vield locus (28) and the flow rule (31) are taken to be ¢ = 37°, I" = 1.34, A = 0.02, and
n = 1.05. The first three values are obtained from plots of 7 vs. o (at critical state),
and o, vs. 1/e,(=ps/p) reported in Atkinson & Bransby (1978, p. 240), and = is
estimated from the data of Airey, Budhu & Wood (1985) (see Appendix B). In case
(ii), only the values of ¢ could be obtained from the literature, and, for want of data,
the other parameters are assumed to have the same values as for Leighton Buzzard
sand.

The results may be divided into four parts: (i) the entry shock or initial curve, (ii)
a bunker with smooth hopper walls, (iii) a bunker with rough hopper walls, and (iv)
the incompressible approximation. These are discussed in turn below.

Most of the computations are based on p{;, = 0.82, which is in the range of poured
bulk densities for sands (Atkinson & Bransby 1978, p. 10). The dependence of the
values of the variables on the downstream side of the entry shock on upstream ones
is examined below.

5.1. The entry shock

The full curves in figures 7 and 8 show profiles of p;,, 0,, 7). and v}, for Leighton
Buzzard sand, with g* =5.25, v = 0.0125, §, = 16°, é, = 16° and 6, = 10°. The
value of §* corresponds to a bin width of about 2 m, and « has been chosen so that
the ratio of bin width to exit slot width is about 30-40. (A large value of this ratio
facilitates the search for asymptotic stress and density fields, as discussed later.) The
quantities 8, and &, represent the angle of wall friction between the material and the
bin wall, and that between the material and the hopper wall, respectively. For
example, the angle of wall friction between sand and a lucite wall is 15° (Nguyen
et al. 1980).

The profile of o}, obtained from (57) is similar in shape to that of pf, (figure 7)
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Fiaurk 7. Stress and density profiles on the downstream side of the entry shock: ———, smooth-

walled hopper with 8, = 0°;

, rough-walled hopper with 8, = 16°. Other parameter values are:

I'=134,1=0.02, n =105, f* =525, pf =0.82, u=0.0125, ¢ = 37°, §, = 16° and 6, = 10°.
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Ficurke 8. Radial velocity and y-profiles on the downstream side of the entry shock: —~, smooth-

walled hopper with 8, = 0°,
figure 7.

, rough-walled hopper with 8, = 16°. Other parameters are as in

because the range of densities is small. The profile of y,, is virtually linear (figure 8);
this is found to be true for other parameter values also, provided that &, is not too
small. It is seen that the magnitude of v}, is greater at the centreline than at the
wall, as expected on account of wall roughness.

The circles in figure 9 show the entry shock obtained by numerical integration of
(66), while the full curve is a parabolic fit, given by

eefenfil)

()
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Ficure 9. Shock profiles obtained by numerical integration of (66): A, smooth-walled hopper with
8, = 0°; O, rough-walled hopper with &, = 16°. Other parameters are as in figure 7. The full curves
are least-square fits, and the dot-dashed curve is a circular arc at the bin-hopper transition T.

rk 1
Here m= (—“’)—1; rh =— (78)
a sin 6,
is chosen to ensure that the curve (77) passes through the bin—hopper transition 7.
The parameter @ is determined using the method of least squares; it is seen from
figure 9 that (77) provides a good fit to the data. This is found to be true in all the
cases considered here.
In §4, new coordinates (t,%) were introduced in place of the polar coordinates
(r*,0). Using (77), the function £(r*,6) in (69) may now be chosen as

r*
a{l+m[6/6,1°}

Thus £ = 0 along the initial curve, and it increases on moving down the hopper.

We now discuss the effect of inertial terms and some of the material parameters on
the downstream variables and the shock shape. The inertial terms in (61) and (62) are
found to be small compared to the other terms. Hence a good approximation to the
exact solution may be obtained by dropping the inertial terms. Making an additional
assumption that 7§, = o8, sin¢, which is reasonable if n ~ 1, (61) and (62) can be
manipulated to obtain

08 (P + Py +2¢) = —sin @ cos (Y5 — V1))- (80)

The variable ., is known a priori only at the centreline and the wall, and is
unknown elsewhere on the shock. Equation (80) may therefore be used to obtain an
estimate for the orientation of the shock at the wall ¥, = /(6 = 6,,). Equation (80)
has two roots for ¢. It can be shown that, while one of the roots implies that the
shock always lies outside the bunker, the other ensures that it always lies inside
(Prakash 1989). Choosing the latter, we obtain an explicit relation for ¥,,, which may
be used as an initial guess for the iteration scheme.

E(r*,0)=1— (79)
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Pk, =082 P, =078
u = 0.0125 u=0.125 u=0.0125 u=0.125
¥ (deg.) 78.0 78.0 78.0 78.0
Ph, 0.7661 0.7661 0.7655 0.7655
Tl 29.7 29.7 28.3 28.3
Yo, (deg.) 10.8 10.8 10.8 10.8
-k, 1.32x 1072 1.32x 107! 1.26 x 1072 1.26 x 107!

TaBLE 1. Effect of variation in p, and u on shock slope and the downstream variables for Leighton
Buzzard sand, with ¢ =37°. I'=1.34, A = 0.02. » = 1.05. §, = §, = 16°, 0, = 10°. g* = 5.25. and
pr =082, at =05

n N,/N,
1.05 12.1
1.20 17.3
1.50 55.6

TaBLE 2. Effect of n on the ratio of normal stresses at the bin—-hopper transition. Here N, = normal
stress on the hopper wall, and N, = normal stress on the bin wall. Parameters values are as in
table 1

As shown in table 1, the shock slope ¥ and the downstream variables p,, o7, and
Y are weak functions of u. This may be anticipated on account of the smallness of
the inertial terms. On the other hand, v}, is approximately proportional to pf, u, in
view of (60). Further, the variation of bin density p&, from 0.82 to 0.78 does not
significantly affect the downstream variables i, pf, and y,,.

It is interesting to note that the parameter n, which determines the shape of the
yield locus (28) strongly affects the value of the ratio N, /¥, (table 2). Here ¥, and
N, are the normal stresses on the hopper and bin walls, respectively, at the
bin-hopper transition. Measured values of N, /N, are in the range 2-13 (Jenike &
Johanson 1968; Rao & Venkateswarlu 1974; Sundaram & Cowin 1979), suggesting
that values of n close to 1 give more realistic estimates of N, /N,.

Figure 4 compares the predicted shape of the shock (DFT) with the rupture layer
DAT observed by Michalowski (1987), and also his predicted rupture layer DET. It
is seen that the actual rupture layer lies in between both the theoretical curves, but
its shape resembles Michalowski’s curve more closely. The rupture layers AC and AG,
whieh separate material moving parallel to the wall from that moving radially,
cannot be predicted with the present assumptions.

5.2. The smooth-walled hopper

Though the ultimate aim is to predict stress and velocity fields in a bunker with
rough walls, it is instruetive to first consider the special case of a bunker with rough
bin walls (8, > 0), and smooth hopper walls (6, = 0). As computational times are
found to be shorter in the latter case, certain features of theory may be explored in
greater detail. In a similar vein, it is tempting to consider the simpler casc of a
smooth-walled bunker (8, = 0,8, = 0). However, with §, = 0, the stress field (50),
which provides values of o* and vy on the upstream side of the shock, is not
approached asymptotieally on moving downwards from the free surface of the fill.
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32

28

20

F1guRE 10. Stress profile along the centreline for a smooth-walled hopper : ——, ll, basic equations
with (At = 1074, Ay = 0.05), (At = 5 x 1075, Ap = 0.025), respectively; @, A, x, Mohr—Coulomb
approximation with (At = 2.5 x 1074, Ay = 0.05), (At = 107, Ay = 0.02), (At = 5 x 1078, Ay = 0.01),
respectively. The dot-dashed curve (A) is the asymptotic stress field. The parameter values are:
=134, A=0.02, n=1.05, p* =525, pt =082, u=0.0125, £, =0.975, a=5.733, ¢ = 37°,
8, =16° 6, =0° and 4, = 10°.

5.2.1. Preliminary results

The basic equations (23)-(27) are integrated numerically using the method
outlined in §4, with the values of the variables on the downstream side of the entry
shock as initial conditions. The results in figures 10-12 are for Leighton Buzzard
sand, with g* = 5.25, « = 0.0125 and £, = 0.975. The latter corresponds to an exit
slot radius r} = 0.144, or a slot width of D = 0.05 m. This is only a nominal figure,
for use with (69). The actual value of r}, at which the exit condition is satisfied, may
be determined as described in §5.2.3.

The full curve in figure 10 shows the profile of the mean stress o* along the
centreline of the hopper, with a grid size of At = 107* and An = 0.05. The squares,
obtained with a finer grid size of At = 5 x 1073, Ay = 0.025, are in close agreement
with the full curve; this suggests convergence of the solution. The waviness in the
stress profile has been observed in the incompressible case also (Savage & Yong 1970;
Kaza 1982), where it was thought to be a genuine feature of the governing equations
and not an artefact of the numerical method used.

Figure 11 shows the profile of v, the orientation of the o, axis, along the radial line
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Fieure 11. y-profile along a radial line at » = 0.5 for a smooth-walled hopper: , ——, basic
7P g ] pp

equations with (At= 10", Ay =0.05), (Af=5x10"% Az =0.025), respectively; @, A, X,
Mohr—Coulomb approximation with (At =25x10", Ay =0.05), (At= 10", An = 0.02),
(At =5x10"°, Ay = 0.01), respectively. The dot-dashed curve (A) is the asymptotic y-profile.
Oscillations observed on approaching the exit with the fine grid are shown in the inset. Parameter
values are as in figure 10.

7 = 0.5 (full curve). The oscillations decrease in amplitude on moving downwards,
Le. as £ increases. However, the amplitude begins to increase rapidly in the vicinity
of the exit slot, making it difficult to continue the integration. As discussed in §3.6,
this behaviour is presumably due to the singularity in the momentum balances,
which is manifested when o* - 0 (figure 10). The broken curve in figure 11 shows the
profile obtained with a finer grid size of At=5x10"% Ay =0.025. Here the
oscillations are relatively undamped, and the profile differs markedly from that
obtained with the coarser grid (full curve). As indicated later, in §5.2.2, there is
reason to believe that the broken curve represents the converged y-profile. Thus the
coarse grid is adequate for ¢ * (figure 10), but not for y. As the magnitude of y is close
to zero, small errors in y do not affect the a* profile appreciably. Close to the exit slot,
the amplitude of the oscillations increases rapidly, even with the fine grid, as shown
in the inset to figure 11. Once again, this reflects the singularity in the momentum
balances.

Figure 12 shows the density profile along the wall. The material dilates
continuously on moving downwards, but the effect is most pronounced near the exit
slot. This behaviour is qualitatively in accord with available data (Bosley et al. 1969
Van Zuilichem et al. 1974 ; Fickie ef al. 1989).

While the present numerical scheme gives reasonable results, the computational
time is excessive — with Af = 5 x 107° and Ay = 0.025, a run in single precision takes
about 3 hours on the DEC 1090 computer. The source of the difficulty appears to be
the term 07*/dp*, which multiplies the derivatives of density in the compatibility
condition (74). With the yield condition given by (28),

or* _ o¥sing(a)'™
P*r A
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Ficure 12. Density profile along the wall for a smooth-walled hopper: , bagic equations with
(At = 107%, Ay = 0.05); @, Mohr—Coulomb approximation with (At =2.5x 1074, » = 0.05). The
dot-dashed curve (A) is the asymptotic density field. Parameter values are as in figure 10.

If a remains close to unity, as is the case in all the results presented here, 0r*/0p*
becomes unbounded as A->0. For example, using the parameter values listed in
figure 10, the value of this term at £=0,9 =1 is 1246, Thus small errors in
evaluating the density field are amplified by this factor, and hence a fine grid is
needed to ensure convergence.

5.2.2. The Mohr—Coulomb approximation

In this section an approximation is introduced, which reduces the computational
time significantly. The basis for this approximation is the observation that the
material remains close to the critical state « =1 over most of the hopper. For
example, a(t = 0.98,% = 1.0) = 0.9909. When « = 1, the yield condition (28) reduces
to the Mohr—Coulomb yield condition (51). Since a & 1, it is proposed to use (51) in
place of the actual yield condition throughout the hopper. Since 7* does not then
depend explicitly on p*, density derivatives do not appear in the compatibility
condition, and the source of stiffness is eliminated.

Using (51), the momentum balances (24) and (25) take the form

¥ vk Our (vE)? . o* . ,
p*[v’,’gﬁ T—ZE;-—(—;;—)]+[1—sm¢cos2y]%7+2o* sm¢sm2y-§%
_singsin2y do* 20*sindcos2y Jy  20*sin ¢ cos2y
r* o0 r* o0 r*

+p*cosf =0 (81)

and

ov¥ v ovF o*oX
x| 2% V5 Ws Vv
P [”' et op T

. . Oo* .
]-—s1n¢sm 2‘}'3‘:;—20'* sin @ cos 27667};

+ 1+singcos2y do* 20*singdsin2y dy 20*sin ¢ sin 2y
r* 00 r* 00 r*

—p*sinf =0. (82)
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FiGUurRe 13. Plot of F as a function of £ for a smooth-walled hopper: ——, u = 0.0125.

Mohr—Coulomb approximation with (At = 2.5 x 107, Ay = 0.05). Other parameter values are as in
figure 10. AB represents the right-hand side of (88).

Equations (81) and (82), together with (23), (26) and (27) constitute the governing
equations for the Mohr—Coulomb approximation (MCA).

Unlike the basic equations (23)-(27), the equations of the MCA are hyperbolic,
with five real and distinct characteristic roots A; = coti,. These are given by

Y =cot™ (v/v}); Yes=—lyFE@—); Vus=—[yFar—3¢)] (83)

The first three roots are identical to the roots of the basic equations, while the
other two arise because of the MCA. Since the equations are hyperbolic, the modified
Euler predictor-corrector method of Zucrow & Hoffman (1976, p. 341) can be used
without making any changes. The initial and boundary conditions are also
unaffected, except that ¢ is replaced by ¢ in (47b).

The MCA has been introduced to mitigate computational difficulties associated
with the basic equations. From another viewpoint, the equations of the MCA may be
regarded as representing a model with a non-associated flow rule. This is because the
angle of dilation » is still computed from the old yield condition (28), which now plays
the role of a plastic potential, and not from the Mohr—Coulomb yield condition (51).

We now discuss the results obtained with the MCA. The circles, triangles, and
crosses in figure 10 represent the o* profiles for three different grid sizes. The profiles
appear to have converged, and are in good agreement with the results obtained using
the basic equations. In the case of the y-profiles (figure 11), the circles lie close to the
full curve, and the triangles and crosses are close to the broken curve. Thus the latter
are likely to represent converged profiles. It is interesting to note that the MCA
faithfully mimics the oscillations in the basic equations. The circles in figure 12
provide further evidence of the agreement between the basic and approximate
equations. Regarding the velocity profiles, in both cases the circumferential velocity
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v} is of order 1074, and oscillates about zero, while the radial velocity v} grows like
(1/7*) on moving downwards.

Turning to the issue of computational time, it is found that integration of the MCA
equations in single precision, with a grid size of At = 107* and Ay = 0.02, takes about
2 h and 12 min. This is significantly lower than the time of 3 h, which is needed to
achieve comparable accuracy with the basic equations. If small errors in y and v¥ can
be tolerated, a coarser grid of At = 2.5x107*, Ap = 0.05 suffices for the MCA (see
figures 10-12). With this grid, it takes only about 28 min for a single run.

Since the MCA has been shown to be a good approximation, and it requires less
computational time than the basic equations, all the results presented henceforth will
be based on the MCA, unless otherwise indicated.

5.2.3. The exit shock

As discussed in §3.6 the following exit condition will be used: at the edges A and
B of the exit slot (figure 5), the exit shock should be tangential to the characteristics
AC and BC, which define the domain of determinacy of AB. Referring to (83) and
figure 5, the root corresponding to the characteristic BC is given by

¥o=—ly—@Gn—i)] (84)

For the parameter values used here the other roots are excluded, since computations

show that the characteristics corresponding to them are disposed to the right of BC.

This is shown schematically by the lines BE, BF, BG, and BH in the inset to figure 5.

At the smooth hopper wall, y = 0,v¥ = 0, and hence (68), which determines the
slope of the exit shock, reduces to

1dr
r* do

= tanyr, = a, F({; %) +by, (85)
6=8,

tanf,
1+sing’ °
% ,v*)z

and F(;r® = p——((r’:

where a, =

(1—sing); ¥, =y’(0=0y) (86)

; CTE (¢5nar7/\76baah:p:70wyﬂ*i u)‘ (87)

0=,

The dependence of F on { follows from the governing equations (23), (26)—(28)
(81), (82), the boundary conditions (48), and the initial conditions (49). In deriving
(85), the Mohr~-Coulomb yield condition (51) has been used. In view of (84) and (85),
the exit condition is given by ¢, = ¢, or

tan (Gm—3¢)—
ay

F(;r¥)=

(88)

For a given material, and a specified wall angle 8, (86) and (87) imply that (88)
provides a relation between the density pf, the reciprocal bin width g*, the velocity
u of the material in the bin, and the exit slot radius r¥. Since the range of poured
densities is small, pf will henceforth be treated as a fixed parameter, and (88) will be
used to explore the interrelationships between the three parameters g*, « and r¥.

For fixed values of §* and u, the value of r¥ may be determined by plotting F({;
r*), obtained from (87), vs. r*, or equivalently »s. £. On this plot, the right-hand side
of (88) may be represented by a horizontal line, and its intersection with the
curve F({;£) fixes £, = £(r¥,4,,) (see (79)).

The full curve in figure 13 shows a plot of F vs. §, for u = 0.0125 and g* = 5.25. The
value of F is small over most of the hopper, but it rises sharply near the exit slot. This
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is caused by an increase in the inertial terms, and a decrease in o* as the exit is
approached ; indeed F may be regarded as a ratio of inertial to frictional effects. The
monotonic increase of F with £ results in a unique value £, =0.972, which
corresponds to r* = 0.162, or a slot width of 0.056 m. (Note that the value of £, is
slightly different from the nominal value £, = 0.975, which has been used in (69) to
generate the results shown in figures 10-13.) In all the cases examined here, a unique
value of 7¥ is obtained for every pair of values of #* and u.

Having located the exit slot corresponding to u = 0.0125 and g* = 5.25, the exit
shock is found by integrating (68), using an Euler scheme with a step size |Ay| = 0.01.
It is found to lie below the plane of the exit slot, but within the desired domain of
determinacy.

5.2.4. Discharge rates

A parameter of great interest in studies on hopper flow is the discharge rate or mass
flow rate M. In fact, an accurate prediction of M has been the cherished (and often
unfulfilled) goal of most attempts. Results presented in this section are confined to
smooth hopper walls, and hence cannot be compared directly with experiments.
However, the dependence of M on some of the parameters may be examined. It is
convenient to introduce a dimensionless discharge rate V;, based on the width D of
the exit slot, and the thickness B of the bunker perpendicular to the plane of flow:

M pru

| %4 ;= 5.
P pmax BDD)}  4/2(r¥sin6,)t

(89)

In the previous section, the value of r¥ corresponding to specified values of u and
p* has been determined. However, the inverse situation is encountered while
attempting to compare measured and predicted discharge rates, since both r¥ and g*
are specified, and u has to be estimated. This involves an iterative procedure, as
discussed in Prakash (1989).

For ease of exposition, it is helpful to replace u, f* and r¥ by three other
parameters V;,, # and Q respectively, where ¥, is defined by (89), and

g B _ P g_mw_ 1 2L
o e U TG, D o
Here j is inversely proportional to the exit slot radius, and R represents the ratio of
the bin width to exit slot width. Based on earlier work (Davidson & Nedderman
1973; Prakash & Rao 1988), it may be anticipated that the discharge rate Vj is (i)
independent of @ for deep hoppers, i.e. for 2 » 1, and (ii) a weak function of 8.
Computations show that this is indeed the case, as discussed in Prakash (1989).

A similar behaviour is exhibited by the stress profiles along the hopper wall,
corresponding to two different values of £, but virtually identical values of B (figure
14). Though the profiles differ markedly near the top of the hopper sections, they
converge to a common asymptotic field near the exit. It is in this region that the
profiles become independent of the height of fill.

The circles and crosses in figure 14 denote &-values on the upstream and
downstream sides, respectively, of the shock at the bin—hopper transition. Though the
jump in & depends on the value of , this is merely an artefact of the scaling used.
In terms of 0* = 0/(p .y gL), the stress jump o, — 08, = 22.2, both for 2 = 32.9 and
for Q = 16.5. Thus o, — oy, is virtually independent of Q. This result may be inferred
from (61) and (62), provided the inertial terms are negligible. It would be interesting
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Ficure 14. Dimensionless stress & = o/(p,,,, g7.) along the wall, for two values of Q: ——, g* = 8.4,

u=0.04, £, = 0.96; *=4.2, u=0.01414, £, = 0.98. Mohr-Coulomb approximation, with
(At = 2.5 x 107, Ay = 0.05). Remaining parameter values are as in figure 10. The circles and crosses
denote the bin stress and hopper stress, respectively, at the bin-hopper transition.

to measure o, — o, in geometrically similar bunkers of various sizes, and check this
conclusion.

5.2.5. Comparison with the smooth wall, radial gravity problem

For the special case of a hopper with smooth walls and gravity directed radially
towards the vertex of the hopper, the basic equations admit a cylindrically
symmetric solution of the form p = p(r), v, = v,(r), v, =0, o = o(r) and y = 0. The
functions p(r) etc. may be determined by integrating ordinary differential equations
in r (Prakash & Rao 1988). In that work initial conditions were specified along a
traction-free surface. Here, for purposes of comparison with the vertical gravity
results, the initial curve is assumed to be a circular arc through the bin—hopper
transition T (figure 4). Along this curve, the field variables are set equal to the
corresponding values for the vertical gravity problem, at the point T.

For § = 24.7,2 = 23.0, and the other parameter values as listed in the caption of
figure 10, it is found that for Leighton Buzzard sand flowing through a smooth-
walled hopper, the assumption of radial gravity leads to a discharge rate ¥, which
is within 1% of the actual value. Similarly, the stress and density profiles do not
differ significantly from those for the case of vertical gravity, as may be expected for
small values of 6,. However, one important difference must be noted. With vertical
gravity, computations breakdown as o* - 0, whereas this problem is not encountered
with radial gravity. Hence, in the latter case, two discharge rates ¥, and ¥, can be
computed, where 1}, is based on the exit shock, and V,,, is based on the traction-free
surface. It is found that V}, is about 13 % less than V,,,; thus the use of the exit shock
effects a significant reduction in the discharge rate.

For 6, = 10°, the exit shock can be constructed, but for 6, = 30° it descends
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Fiaure 15. Stress profiles for a rough-walled hopper: , ———, Mohr—Coulomb approximation
along the centreline and wall, respectively, with (At = 1079, Ay = 0.05); O, X, basic equations
along the centreline and wall, respectively, with (Af = 10=%, Ay = 0.05). The parameter values
are I’ = 1.34, A = 0.02, n = 1.05, f* = 5.25, p¥ = 0.82, u = 0.0125, £, = 0.975, a = 5.881, ¢ = 37°,
8, =46, =16° and 6, = 10°.

steeply from the hopper wall, and intersects the traction-free surface before reaching
the centreline. Thus the exit shock cannot be fully realized in this case. Further, the
density (p*) on the downstream side of the exit shock is found to be too low — around
0.23-0.38. These features are symptoms of deficiencies in the present exit condition.

5.3. The rough-walled hopper
5.3.1. The Mohr—Coulomb approximation

In this section, the assumption of smooth hopper walls is relaxed. Thus the effect
of wall roughness may be examined, and discharge rates compared with experiments.

As in the case of the smooth-walled hopper, computations with the basic equations
turn out to be time consuming. Using the parameters listed in the caption of figure
15, and a grid size of At =107%, Ay = 0.05, an integration from ¢ = 0(§ =0) to
t =0.095(£ = 0.296) takes about 1 h. Since the hopper exit corresponds roughly to
t = 1, it is estimated that a run from the entry shock to the exit will take about 10 h
of computing time. With the existing facilities, this translates to about 10 days of
real time per run. Hence, as before, the basic equations are abandoned, and the
Mohr—Coulomb approximation (MCA) is invoked.

As in the case of the smooth-walled hopper, the state of stress remains close to the
critical state o« =1 for 0 < ¢ < 0.095. For example a(t = 0.095, 7 = 0.5) = 0.9920.
Further, in this range of t-values, there is satisfactory agreement between results
obtained with the basic equations and the MCA equations. This is evident from
figures 15-19, where the circles and crosses represent the former, and the full and
broken curves the latter.

The time taken to integrate the MCA equations up to ¢t = 0.095, with a grid size of
At = 107%, Ay = 0.05, is about 6 min, as compared to 1 h for the basic equations. The
key point to be noted is that the MC'A permits a larger value of At to be used, without
a concomitant reduction in accuracy. The accuracy of the MCA was checked by
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Ficure 16. y-profile along a radial line at # = 0.5 for a rough-walled hopper: , A,
Mohr—Coulomb approximation with (At = 10", Ay = 0.05), (At = 5x107°, Ap = 0.025), respect-
ively; O, basic equations with (At = 107%, Ay = 0.05). The dot-dashed curve (A) is the asymptotic
y-field. Parameter values are as in figure 15.

integrating the equations with a finer grid of At = 5 x 107%, Ay = 0.025. For instance,
figure 16 shows satisfactory agreement between the y-profiles for the two grid sizes,
denoted by the triangles and the full curve.

A run from the initial curve to ¢t = 0.905, where the computations break down,
takes about 50 min, as compared to an estimated 10 h for the basic equations. Thus
the MCA leads to a significant reduction in the computation time, and the effect is
more pronounced than in the case of the smooth-walled hopper.

In view of the above discussion, all further results will be based on the MCA only.
Figures 15-19 show the profiles of a*, y, p*, vf and v} along the radial lines. They
are qualitatively similar to the profiles for a smooth-walled hopper (figures 10-12),
and exhibit a waviness which is damped as £ increases. A possible reason for this
damping is discussed in the section below on asymptotic fields. As before, the
solution breaks down when o* —0. However, it has been possible to integrate the
equations until the value of o* is fairly small —about 6.5x 1072 (at # = 1) in the
present case, which corresponds to o = 125 N/m?. It may be noted that the strain-
gauge type of load cells, which are used for wall stress measurements in bunkers, have
an accuracy of about 7-60 N/m? (Bransby & Blair-Fish 1974; Tiiziin & Nedderman
1985).

Figures 18 and 19 show that the circumferential velocity v} remains small
throughout the hopper, and the flow is nearly radial. This conclusion may not hold
for large values of 6.

Turning to the exit condition, the rough-wall counterpart of (88) is found to be

F(C:r*) = tan (3T —3p—y.]—b,

- o1)

_ sin 6, ] _ sinf, —sin¢sin (2y,, +6,)
" cosf, +singcos (2y,+6,) ' cosf,+singcos(2y,+6,)’

where a, (92)
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Fieure 17. Density profiles for a rough-walled hopper: , ———, Mohr-Coulomb approximation
along the centreline and wall, respectively, with (At = 1074, Ay = 0.05); O, X, basic equations
along the centreline and wall, respectively, with (Af = 1073, Ay = 0.05); —. -—, —-—, asymptotic
density fields along the centreline and wall, respectively. Parameter values are as in figure 15.
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Ficure 18. Circumferential velocity along a radial line at = 0.5 for a rough-walled hopper: ,
Mohr-Coulomb approximation with (At = 1074, Ay = 0.05); O, basic equations with (At = 107%,
Ay = 0.05). The dot-dashed curve (A) is the asymptotic velocity field. Parameter values are as in
figure 15.
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Fioure 19. Radial velocity along the centreline for a rough-walled hopper: , Mohr—Coulomb
approximation with (At = 1074, Ay = 0.05); O, basic equations with (At = 1073, Ay = 0.05). The
dot-dashed curve (A) is the asymptotic velocity field. Parameter values are as in figure 15.
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Fieure 20. Exit shock (——) and ‘outermost’ characteristics (——) for a rough-walled hopper.
Mohr-Coulomb approximation with (At = 10"%, Ay = 0.05). Other parameter values are as in
figure 15.

Yw = Y(re,0,), and F({;7¥) is defined by (87). Using (91), and following the procedure
described in §5.2.3, the exit shock may be constructed. This is shown by the full
curve in figure 20; in contrast to the smooth-walled shock, it lies above the plane of
the exit slot. However, it is only marginally above, the maximum height relative to
the exit slot being about 1 mm.

3 FLM 225
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5.3.2. Perturbation solution for the asymptotic stress and density fields

In this section, an attempt is made to deduce certain features of solutions to the
basic equations. This is largely motivated by earlier work on incompressible flow,
which suggests that stress and velocity fields converge to certain asymptotic fields,
as r* decreases, i.e. as £ increases (Johanson 1964; Jenike 1965; Pitman 1986).
Further, similar behaviour was observed in the compressible, smooth-wall, radial
gravity problem, where the existence of an asymptotic density field was also
demonstrated (Prakash & Rao 1988). It should be noted that these asymptotic fields
are particular solutions of the basic equations, for the special case of negligible
inertial effects. Indeed, significant deviations from these fields occur near the exit
slot, owing to growing inertial effects. Therefore, the inertial terms will be omitted
from the momentum balances in the present analysis also. The incompressible results
can be exploited by using a perturbation solution based on a parameter which is a
measure of density variation. Thus the base state or zero-order solution represents
incompressible flow, whereas higher-order correction terms reflect the effect of
compressibility. Details of the procedure are described below.

The parameter A, which occurs in the relation (30) between the critical-state mean
stress o¥ and the density p*, is a suitable perturbation parameter. To see this, note
that it may be rearranged to get

1 a¥
—=I—Aln [ ] 93)
p* B (
Thus, in the limit A >0, p* > 1/I", which may be regarded as the ‘incompressible’
density. Further, since A is expected to be a small parameter — around 0.02 for
Leighton Buzzard sand - all the variables may be expanded in powers of A to get

a¥ =X (r*, 0)+ Aok (r*,0)+... (94)
and so on.

Substituting expansions of the form (94) into the basic equations (23)-(27) and
collecting terms of O(A®) and O(A!) gives two sets of equations. Let us first consider
the equations of O(A®):

X, 1 vk

ety =0, (95)

275 cos 2y,

0 190 .
e (g o X, — 75 cos2y,)— 20 (T3 sin 2y,)— +p¥cost =0, (96)

*
aa* (T8 sin 2y,) + 1* % — (g 0, + T cos 2y,) — m —p¥sind =0, (97)

cos 2y, [%v;z’+ri*%+v:°]—sinvo[%v7§’—ri*a—g%—1;—i’] =0, (99)

where P = Il" (100)

In (96) and (97), the mean stress o* has been replaced by ac¥. It is convenient to
do so, since the yield condition (28) involves a, rather than o*.
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Equations (95) and (99) imply

v*
sinv,—=2 =0
or*

or, since dv¥/0r* * 0 in general, sin v, = 0. Therefore, it follows from (31) that

=1
and hence from (29) and (28) %o (101)

oF =0¥; 78 =oc%sing = ofsing. (102)

Thus the Mohr—Coulomb approximation (51) is recovered in the incompressible limit
A—0, and (95)—(98) are identical in form to the commonly used incompressible
equations (see, for example, Jenike 1964 5).

It is well known that the incompressible equations admit an exact solution of the
form (Jenike 1964 b)

o5 =08, =1*by(0); 7o = 9o(0), (103)
w,(6
v = :f. ), v =0, (104)

where the functions b,, g,, and w, are determined by integrating ordinary differential
equations in 6. Equations (103) represent the ‘radial stress field’, and (104) the
‘radial velocity field’; these are the incompressible asymptotic fields referred to
earlier.

Having solved the equations of O(A°), we turn to the equations of O(A'). These are
given by

av:l_}__aval_i_ r1+p0 Yo _o

or* r* 00 ( *)2 ’ (105)

0

3+ [oF —7F cos 2g,+ 2r*b, v, sin ¢ sin 2g,] — [‘r1 sin 2g, + 2r*b, 7y, sin ¢ cos 2g,]

1
r* 00

-—72—* [7¥ cos 2g,— 2r*b, v, sin ¢ sin 2g,]+ p¥ cos @ = 0, (106)

1
[‘r1 sin 2g,+ 2r*b, ¥, sin ¢ cos 2g,] +— [0'1 +71¥ cos 2g,— 2r*b, y, sin ¢ sin 2g,]

r* 00

—% [7¥ sin 2g, + 2r*b, Y, sin @ cos 2g,] —p¥ sinf = 0, (107)

duy 10wy vh]| . vl 1 vl v dw,y,
it WA/ Y —a___a__"14_ 071 =9 108
008 24 [0 T o0 | " 29 r + (r*)? cos 2g, (109

—pg(n—1)cos 290
2nsin ¢

The zero-order solution has been used to simplify (105)-(109). Further, (93) and
(103) imply

and a, = (109)

. 1 a"c"0 *
p1 = F = pn(0)+prInr*, (110)
1 b,(6 1
where pu(0) = ( 0’;* ))’ P12 = = (111)

For typical parameter values, go(ﬁ) is found to increase monotonically from zero at

6 = 0t0 Yoy = Vp(¢ = @) (see (47EY at 6 = 6,,. Since n > 1, and 2¢,(0,,) < 37, it follows

from (109) that (i) &, < 0, and (ii) the largest value of |a,| occurs at the centreline.
3-2
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F1cure 21. Stress profiles obtained by numerical integration of the Mohr—Coulomb approximation
with (A = 1074, Ay = 0.05), along the centreline ( ) and wall (——-), compressible asymptotic
stress fields along the centreline (—--—) and wall (—-—), and radial stress fields along the
centreline (Q) and wall (x), for a rough-walled hopper. Parameter values are as in figure 15.

Thus a = 1 +Aa; < 1, and hence the material dilates as it flows down the hopper;
further the dilation is expected to be more at the centreline than at the wall.
With p¥ given by (110), the momentum balances (106) and (107) admit a solution
of the form
o3y = by (0)r*+b,,(0) r*Inr*;  y, = g,,(0)+9,,(6) Inr*. (112a,b)
Substituting (1125) into the coaxiality condition (108), it is found that the equation
of continuity (105) and the coaxiality condition (108) admit a solution of the form

wy,(0)  w,(0)Inr* h(0
i =20 ee@lnr - MO (13)
G
where h(6) E,[ [Py wo(0') + w o (0)] O (114)
0

and the functions b,,, b,,, 911, ¢12, wy; and w,, are determined by integrating ordinary
differential equations, as discussed in Appendix C. It is interesting to note that
bio=p¥by; 912 =0; w,=—pgw, Hence (113) and (114) imply v} =0, and
consequently the velocity field is radial to O(A).

The functions w, and w,, are of the form w, = wy(0; F,); w,, = w,(0;F,, F,), where
P, and P, are integration constants. Within the context of the asymptotic fields, the
boundary conditions that must be prescribed for w, and w,, are not evident. Here we
choose the values of P, and F, so that the exit condition (91) is satisfied approximately
at the desired exit slot radius r* = r¥, as explained in Appendix C.

The curves marked A in figures 16, 17, and 21 show the asymptotic fields for v, p*,
and o*. As £ increases, the profiles obtained by numerical integration of the MCA
tend to converge to these fields. Though o*(6 = 0) > o*(6 = 8,,) at the top of the
hopper section £ = 0 (figure 15), the trend is reversed for £ > 0.542 (figure 21), in
keeping with the behaviour predicted by the asymptotic fields. Similarly, for
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Ficure 22. Profiles of ¥ across the hopper at various values of ¢: curve 1, t =0; 2, t = 0.03; 3,
t=0.06;4,t=0.1;5,t=0.12; 6, t = 0.13225. Mohr—Coulomb approximation with (At = 5x 107%,
Ay = 0.025). Parameter values are: I'=1.34, A =0.02, n = 1.05, f* =35, pf =0.82, u = 0.04,
£, =092 a=3.96, ¢=231°34,=4,=15°and 6, = 15°.

£ > 0.542 the density at the centreline is lower than that at the wall (figure 17), as
expected. Figure 21 shows that the o* profiles deviate from the asymptotic fields in
the region 0.88 < £ < (.96, which corresponds to about three exit slot radii. Thus
inertial effects are confined to a small region near the exit slot. The asymptotic radial
velocity field, estimated by the procedure discussed in Appendix C, lies within 16 %
of the profile obtained by numerical integration of the MCA (figure 19). For A = 0.02,
the compressible asymptotic stress field and the incompressible radial stress field
[equation (103)] do not differ significantly, as shown by the curves marked A, and the
crosses and circles in figure 21. However, for A = 0.05 there is a marked difference
between the two, and the actual stress profile converges to the compressible
asymptotic field (Prakash 1989).

Figures 10 and 12 show that in the smooth-walled hopper case also, stress and
density profiles obtained by numerical integration of the basic equations converge to
the asymptotic fields as £ increases. However the y-profile in figure 11 (broken curve)
does not converge to the asymptotic field, unlike in the rough-walled case (figure 16).
It should be noted that in the incompressible case, Kaza (1982) has shown by
examining an approximate version of the governing equations, that for a smooth-
walled hopper, perturbations to the radial stress field are downward unstable for
b < 42°.

5.3.3. Computational difficulties with larger wall angles

All the results presented so far have been confined to 8, = 10°. For a larger wall
angle of 6, = 15°, attempts to integrate downwards from the entry shock were not
successful. For example, the y-profiles in figure 22 display a ‘travelling wave’ type
of behaviour. The waves move across the hopper rapidly, and it is difficult to
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integrate the equations beyond ¢ = 0.13225 ({ = 0.284). The reason for the difficulty
becomes apparent on examining the directions of the C, characteristics at various
locations on the line ¢ = 0.13225. Close to » = 0.125, the characteristics change
direction sharply and become nearly parallel to the #-axis. Thus the solution cannot
be continued further with the present coordinate system. In addition, the
characteristics appear to converge in this region, suggesting the formation of a shock.

It is interesting to note that similar problems also arise in the incompressible case
for 8, = 15°, when a modified form of the entry shock is used as the initial condition.
The incompressible approximation is discussed later, in §5.4.

If a shock does form, a method has to be devised to locate the point at which it
forms, and then track it through the hopper. As we do not know how this is to be
done, a simpler alternative is adopted here, as indicated below.

Initial conditions based on the entry shock are abandoned, and conditions based
on the asymptotic fields are adopted in both the compressible and the incompressible
cases. Details are given in Appendix C. A similar procedure was used by Kaza &
Jackson (1982a) in the incompressible case. It is hoped that the actual solution will
converge to the asymptotic fields, after experiencing rapid changes in the upper part
of the hopper. Clearly this modification of the initial conditions is not a satisfactory
resolution of the problem, but merely one that permits a solution to be obtained. It
is hoped that the entry region will be examined more carefully in future, with
reference to: (i) numerical integration using an alternative system of coordinates; for
example, if the trajectory of the major principal stress axis is used as a coordinate
curve, then the characteristics always have a constant orientation relative to it, (ii)
the possible development of shocks from smooth initial data, and (iii) the convergence
of solutions to the asymptotic fields.

5.3.4. Discharge rates

In this section, discharge rates predicted by the present theory will be compared
with the experimental results of Nguyen et al. (1980), for the flow of sand through a
plane bunker with lucite walls.

The quantity of interest is the dimensionless discharge rate V;,, defined by (89). It
is convenient to rewrite this as

Pw
—j p*v¥r*dd
— (115)

Vo= 3
P V2(r¥sinf,):

where the integration is performed across any circular arc.

Nguyen et al. (1980) report discharge rates for wall angles in therange 15 < 6, < 90°.
As mentioned in the previous section, the use of initial conditions based on the entry
shock led to computational difficulties for 8, = 15°. Since these are likely to persist
for larger wall angles, alternative initial conditions based on the asymptotic fields
will be used here, as explained in Appendix C. Using the equations for the asymptotic
fields, (115) may be rewritten as

Vo = Voo + AV = Vo, (116)
where

—p8 " v
Voo=——-—> dé; Vo =—m + de.
o \/2(r$sin0w)ff: o P17 /2(r¥ sin 0,)} J: (P ¥y 1y t00)
(117)
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6, (deg.) ¢ g B Vou r*
15 0.322 1.0 0.801 0.343
15 0.322 0.89 0.713 0.317
22 0.222 1.0 0.645 0.234
22 0.222 0.92 0.593 0.222
32 0.157 1.0 0.415 0.162
32 0.157 0.92 0.382 0.154

TasLE 3. Compressible discharge rates (P, V;,,) corresponding to various exit slot radii (r*).
Mohr-Coulomb approximation. Parameter values and grid sizes are as in figure 23

With wy(0) and w,,(6) obtained as described in Appendix C, the integrals in (117) may
be evaluated by quadrature. Here it is found convenient to use the following
alternative procedure, for the reason discussed below. Introducing new variables z,
and z,, defined by the differential equations

dz dz
d_g=wo§ —d-01= (g w1y + P11 Wo) (118)
and satisfying the initial conditions
2(0) = 05 2,(0) =0 (119)
—p* -
it follows that  Vp, = — Lo 70l0u)_. | (120)

B V/2(r¥*sin 6, ) D A/ 2(r¥sin 6,)

Thus the use of the functions z, and z, permits the evaluation of V,, and ¥y,
simultaneously with w, and w,,, when (118) are integrated numerically along with
the differential equations for w, and w,,.

For a specified value of r¥, (116)—(120) determine an approximate discharge rate
Vpa = Vpo+ AVp,. The value is not exact, since evaluation of the constants P, and P,
in the expressions for w, and w,, involves simplifying assumptions (see Appendix C).
The procedure for obtaining the actual discharge rate ¥, which corresponds to 7§ will
be discussed shortly.

It is found that 1, < 0 for the parameter values used here. Thus the approximate
analysis suggests that inclusion of density variation reduces the discharge rate; this
is borne out by the results presented later.

To determine the actual discharge rate Vp,, the asymptotic fields are used as initial
conditions along the entry shock, and the MCA equations are integrated downwards.
The exit condition will be satisfied at some point r* = ¥, which is ¥ in general.
Thus the discharge rate Vp,, {equation (116)) corresponds to ¥ when approximate
analysis is used, and to 7§ when the MCA equations are integrated. Multiplying the
constants P, and F, by a common factor F,, and repeating the procedure, a discharge
rate F, Vp, and an exit slot radius »* =7} are obtained. A suitable choice of F,
(typically in the range 0.85-0.92) ensures that rf and r¥ bracket the desired value r¥,
as shown in table 3, The discharge rate Vj is then found from V,, and F, V,, by linear
interpolation. A similar procedure is adopted in the incompressible case also.

Let us briefly consider the choice of parameter values. The angle of internal friction
¢, and the angle of wall friction &, are taken to be 31° and 15°, respectively, as given
by Nguyen et al. (1980). The precise values of the bin width 2L, the slot width D, and
the particle density p,, have not been reported by Nguyen et al. (1980). Here we
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Ficure 23. Comparison of predicted and measured discharge rates: —— (labelled C), and O,
Mohr—Coulomb approximation with (At =2x 1074, Ay =0.05) for 8, = 22° and 6, = 32°, and
(At = 1074, Ay = 0.05) for 8, = 15°; (labelled I) and A, incompressible approximation with
(At =25x%x10", Ay =0.05) for all wall angles; @, experiments of Nguyen ef al. (1980). All
computations are based on asymptotic fields as initial conditions. The broken curves —- (C) and
——— (I) are the compressible and incompressible discharge rates, respectively, obtained by the
approximate analysis. Parameter values: I'=1.34, A =0.02, n = 1.05, g* = 35, {, = 0.92, and
a=3.96 for 8, = 15°; a = 2.747 for 6, = 22°; a = 1.934 for 6, = 32°; ¢ = 31°, §, = 15°.

set, f* = p,/(Pmax 9L) = 35(L = 0.15 m), Q = r¥/r¥ = 2L/D = 12(D = 25 mm), and
ps = 2670 kg/m? (the value reported in Brennen & Pearce (1978) for a sand with
similar material properties). The values of L and D are within the range of values
used by Nguyen et al. (1980). Recently R. H.Sabersky (1989, private com-
munication) has indicated that the experiments were performed with L = 0.14 m and
D-values in the range 25.4-31.8 mm. Based on earlier results, it is expected that the
difference between the parameter values used in the computations and the
experiments will not affect the predicted discharge rates significantly.

We are now in a position to compare measured and predicted discharge rates, for
both compressible (A > 0) and incompressible (A = 0) cases. Details of the latter
computations are given in §5.4. The predicted compressible discharge rates are
shown by the full curve labelled C in figure 23. They are well below the measured
values, and the error increases with 8, from 38 % of the latter at 6, = 15° to 59%
at 6, = 32°. It is interesting to note that the incompressible results, shown by the full
curve labelled I in figure 23, also underestimate discharge rates. In this case,



Flow of granular materials through a bunker 67

however, the error is less —about 31 % to 55 %. This is surprising, as the compressible
model is believed to be more realistic, and the density measurements of Bosley et al.
(1969), Van Zuilichem et al. (1974), and Fickie et al. (1989) reveal a strong dilation
near the exit slot. Perhaps there is some deficiency in the manner in which density
variation has been incorporated here.

For a smooth-walled hopper with 8, = 30°, the exit shock could not be constructed,
as mentioned in §5.2.5. The problem disappears when wall roughness is included ; the
exit shock is then fully realized for all the wall angles considered here, namely
15° £ 6,, < 32°, and its shape is similar to that of the shock down in figure 20.

The broken curve labelled C in figure 23 shows approximate compressible
discharge rates, computed using (116)—(120) and (C 10). These are within 9% of the
exact (numerical) values, and have been obtained with far less computational effort.
These remarks also apply in the incompressible case, where the difference between
approximate and exact values is about 11 %.

When the traction-free surface is used as the exit condition, approximate analyses
of the incompressible equations usually overestimate discharge rates for small values
of 8, (Brennen & Pearce 1978 ; Savage & Sayed 1979 ; Kaza & Jackson 1982a; Meric
& Tabarrok 1982). However, the converse is true when the surface of vertical free fall
is used as the exit condition (Kaza & Jackson 1982b). The full curves in figure 23 are
based on the exit shock, and conform to the latter trend. As explained earlier, it is
not possible to integrate the equations down to the traction-free surface and check
whether the discharge rates are overestimated.

All the same, the equations can be integrated until of = o*(r*,0,,) is fairly
small — about 0.0194 to 3.96 x 1072 for 15° < 4, < 32°. It is interesting to consider
the implications of a hypothetical and arbitrary exit condition

o* =0.0194. (121)

In the compressible case, with 8, = 15°, this condition is satisfied at ¥ = 0.294 and
r¥ =0.273 for the prescribed discharge rates V,, =0.801 and F,V,, =0.713,
respectively. The discharge rate Vp,, corresponding to the exit condition (121), and
exit slot radius r* = 0.322 (table 3) is then found from V,, and F; 1}, by linear
extrapolation. A similar procedure is also adopted in the incompressible case. The
compressible and incompressible values of ¥, so obtained are shown in figure 23 by
the square and triangle, respectively. Two features are noteworthy: (i) the
discrepancy between theory and experiment is now reduced to about 22% in the
compressible case and about 10 % in the incompressible case, and (ii) the difference
in the values of o} at the edge of the exit slot, as obtained with different exit
conditions (91) and (121), is only about 0.044.

The above discussion suggests that the exit condition (91) should be modified, but
the form this should take is not clear at the moment. It appears that future attempts
to refine discharge rate predictions should concentrate on the region close to the exit
slot. It is conceivable that the appropriate equations for this region differ markedly
from those used higher up in the bunker.

5.3.5. Comparison of predicted density profiles with experiments

In this section, we present a preliminary comparison of the predicted density
profiles with the measurements of Fickie et al. (1989) for glass beads flowing through
a wedge-shaped hopper with 6, = 23° and D = 1.3 cm. The values of ¢ and 4, have
not been reported in their paper, but R. Jackson (1989, private communication) has
indicated that ¢ = 32.4°, and 4, = 15.1°.
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Ficure 24. Comparison of predicted and measured density profiles along the centreline of a hopper:
——, Mohr—Coulomb approximation with (Af = 2 x 1074, Ay = 0.05); O, experiments of Fickie et

al. (1989). The broken curve represents free fall under zero stresses. Parameter values are: I' = 1.2,
A=0.02 n=105 *=118.6, £, = 084, a = 2.559, ¢ = 32.4°, §, = 15.1°, 6§, = 23°.

To proceed with the comparison, the initial curve is chosen as a circular arc passing
through r = r,, = 10.4 cm and 6 = 6. This corresponds roughly to the highest level
at which the density has been reported. The value of the parameter I' is chosen by
trial and error so that the initial density at 8 = 0 is p* = 0.77, which is close to the
measured value. The procedure described in Appendix C and §5.3.4 is then used to
generate the asymptotic fields, and adjust the discharge rate to ensure that the exit
shock passes through the edge of the physical exit slot.

The circles in figure 24 show the measured density profile along the centreline of
the hopper, while the predicted profile is shown by the full curve. Here 3§ = y'/D,
where ¥’ is the vertical distance measured upwards from the plane of the exit slot.
The exit shock intersects the centreline at § = 0.046, and hence p* jumps from a
value of 0.744 above to 0.605 below. The broken curve represents the density profile
obtained by assuming free fall under gravity with zero frictional stresses. We note
that Fickie et al. (1989) have also predicted the density profile below the exit slot
using the assumption of free fall. The only difference is that they appear to have used
the measured value of the density at the exit plane as the initial density, whereas
here the initial condition is obtained as part of the solution of the hopper problem.
Within the hopper, there is more dilation than predicted by the model. It remains to
be seen whether the use of a larger value of A will lead to better predictions. Below
the hopper, the agreement is fairly good; this is somewhat surprising, and may be
a fortuitous occurrence. Alternatively, it is conceivable that the density on the
downstream side of the shock is a weak function of conditions on the upstream side.

Figure 25 shows density profiles measured on horizontal planes above and below
the plane of the exit slot, and also the corresponding predictions. Within the hopper,
the profiles are almost flat, but the measured density is higher at the centreline than
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FicurEg 25. Comparison of predicted and measured density profiles on horizontal planes above and
below the plane of the exit slot: , Mohr-Coulomb approximation with (At =2x 107, Ap =
0.05); O, O, x, experiments of Fickie et al. (1989). The broken curves represent free fall under zero
stresses. Parameter values are as in figure 24. ——, [, § = 0423; -, Q, 5 =—0.0385; — —, x,
§=—2.154.

at the wall, in contrast to predictions. Below the hopper, there is fair agreement
between theory and experiment for § = —0.0385, and the density is now much higher
at the centreline than at the edge of the jet of particles. The crosses in figure 25 show
that at a lower value of #(= —2.154), the jet has spread laterally. Thus the
assumption of vertical fall is not valid here.

5.4. The incompressible approximation

If the sizes of the yield loci increase rapidly with increasing density, i.e. if
07*/0p* > 1, then a wide range of stresses correspond to a narrow range of densities,
and the assumption of incompressible flow may be reasonable (Jackson 1983). It is
of interest to compare the incompressible and compressible solutions, so that the
importance of density variations may be assessed.

The incompressible equations may be obtained from the compressible equations
(23)-(27) by expanding all the field variables in powers of A, and collecting terms of
O(A°). The latter are given by the continuity equation

or 1 vy oF
o T oo T = O (122)

the coaxiality condition (26), and the momentum balances (81) and (82). As
mentioned earlier, (93) provides the incompressible density p¥ = 1/I, in the limit
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A—>0. For an alternative derivation of these equations from the compressible
equations, see Jackson (1983). In the limit A >0,2—1, as noted earlier in the
subsection on asymptotic fields. Hence the incompressible equations may be
regarded as the outcome of the ‘critical-state approximation’ (Jackson 1983). It
should be noted that the momentum balances are identical in form to those of the
Mohr—Coulomb approximation.

The incompressible equations have been examined in detail elsewhere (see for
example, Jenike 1964a; Savage & Yong 1970; Brennen & Pearce 1978; Kaza &
Jackson 1982a; Meric & Tabarrok 1982). Here we merely note that they have four
real and distinct characteristics, and are hyperbolic. In contrast, the basic
(compressible) equations (23)—(27) have only three real and distinct characteristics,
and are not hyperbolic. Further, these characteristics do not go over smoothly to
those of the incompressible equations as A —0. These two features of the basic
equations, which appear to be unsatisfactory, may be eliminated by using MCA
equations (23), (26), (27), (81) and (82).

Numerical integration of the MCA, with 6, = 32°, g* = 35.0, and the asymptotic
fields as the initial condition leads to a discharge rate 1, = 0.382, and a reciprocal
exit slot radius # = 227.3. For the same values of 8,,, #* and f, numerical integration
of the incompressible approximation with the radial stress and velocity fields as
initial conditions leads to a discharge rate V, = 0.422. Thus the incompressible
approximation overestimates the discharge rate by 10%. Figure 23 shows that, at
other values of 6, also, discharge rates are overestimated by roughly the same
amount. Similarly, for 6, = 32°, the incompressible approximation overestimates
the mean stress by 5-10%.

6. Discussion

Continuum models have been used here to predict the stress, density, and velocity
fields in wedge-shaped bunkers. The principal results obtained, and the limitations
of this work are summarized below with reference to

(i) The transition region between the bin and hopper sections,
(ii) the hopper section,
(iii) the exit region,
(iv) discharge rates,
(v) density profiles, and
(vi) the incompressible approximation.

6.1. The transition region

This has been idealized as a single rupture layer or shock across which the density
decreases, the state of stress switches from active above to passive below, and the
velocity vector from vertical above to radial below. Because the flow rule and the
coaxiality conditions are not in conservation-law form, the jump balances have been
supplemented by additional assumptions. The predicted shape of the shock differs
markedly from that observed by Michalowski (1987), particularly near the centreline
(figure 4). It appears that the use of a single rupture layer is not justified in this
region.

At the bin—hopper transition, the ratio of the normal stress on the bin wall to that
on the hopper wall, N,,/N,, is found to be a strong function of the parameter n, which
determines the slope of the yield locus (table 2). With = close to 1, the value of NV, /N,
lies in the range of measured values.
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6.2. The hopper section

While it is well known that the incompressible equations are hyperbolic, the nature
of the compressible equations does not appear to have been examined in literature.
Here it is shown that the basic equations are not hyperbolic, even though they have
real characteristics. This stems from the use of an associated flow rule; it is shown in
§5.2.2 that hyperbolicity may be restored by using a non-associated flow rule. More
experimental data are needed to choose between these two types of flow rules.

Though the basic equations are not hyperbolic, they may, in a certain sense, be
split into two systems of hyperbolic equations as explained in §2.5. However, the
computational time is large, owing to the large magnitude of the term 07*/0p*, which
occurs in the compatibility condition (74).

The above problem is alleviated by noting that the material remains close to the
critical state & = 1 over most of the hopper section. In the limit a1, the yield
condition (28) reduces to the Mohr—Coulomb yield condition (51). Using the latter as
the yield condition, but retaining (28) as the plastic potential, we obtain the
governing equations of the Mohr—Coulomb approximation (MCA). These may be
regarded as representing a material with a non-associated flow rule. Unlike the basic
equations, they are strictly hyperbolic, and yield comparable results (figures 1012,
and 15-19) with much lower computational times. Further, the characteristics of the
MCA equations go over smoothly to those of the incompressible equations in the limit
A—0, again unlike the basic equations.

A perturbation method has been used to derive expressions for the asymptotic
stress, density, and velocity fields. Figures 10, 21, 12, 17 and 16 demonstrate
convergence of the actual o*, p*, and y-fields to the asymptotic fields as £ increases.
In contrast, the y-field for a smooth-walled hopper (figure 11) does not converge to
the asymptotic y-field. As indicated in §5.3.2, there is reason to believe that the
radial stress field is unstable to perturbations, for the parameter values used here.
The asymptotic velocity field is found to be radial to O(A), and the profile of v} (figure
18) does show a tendency to approach the asymptotic value v} = 0 as § increases. The
profile of v¥ remains close to the asymptotic field (figure 19); however, this cannot
be regarded as evidence of convergence, since the initial values at § = 0 do not differ
appreciably. Close to the exit slot, growing inertial terms cause the profiles of all the
variables to deviate from the asymptotic fields.

While attempting to integrate the MCA equations downwards from the entry
shock, computational difficulties were encountered for 8, > 15°. These arise because
the C, characteristics become nearly parallel to the #-axis, and appear to converge,
suggesting the formation of a shock. The difficulty is overcome here by abandoning
the initial conditions based on the entry shock, and using alternative initial
conditions based on the asymptotic fields (Appendix C, §C.2). This ensures that the
MCA equations can be integrated downwards in all the cases examined. Of course,
the original problem remains unsolved. It is not clear at present whether the
behaviour exhibited by the profiles in figure 22 is genuine, or is a reflection of some
unnatural assumptions made while constructing the entry shock. This cannot be
ascertained since stress measurements in the interior of bunkers are as yet
unavailable.

6.3. The exit region

Most analyses of hopper flow have assumed that the hopper ends at a traction-free
surface o* = 0, which spans the exit slot. As noted by Kaza & Jackson (1982a), it is
difficult to approach this surface from above, owing to a singularity in the
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momentum balances. Further, with the assumption of incompressible flow in the
hopper, use of this exit condition leads to an unrealistic compaction of material on
the downstream side of the traction-free surface (Kaza & Jackson 1982b). For the
special case of the smooth-wall, radial gravity problem, it can be shown that this
conclusion is unaffected by the inclusion of density variation. Hence an alternative
exit condition, suggested by Kaza & Jackson (1982b) is used here. This assumes that
the exit slot is spanned by a shock, below which the material falls vertically with zero
frictional stresses. As these conditions are insufficient to determine the bin velocity
u uniquely, the following additional constraint is imposed in the present work. It is
assumed that at the edge of the exit slot, the shock is tangential to the characteristic
which determines the domain of determinacy of the exit slot (figure 5). As discussed
in §3.6, this prescription determines an upper bound on « for a given exit slot width,
and, for the parameter values used here, ensures that the shock lies within the
domain of determinacy of the exit slot everywhere (figure 20).

Clearly, the condition described above for locating the exit shock along the wall
has no physical basis. Further, the following problems have been encountered while
using this condition. For any chosen values of the angle of internal friction ¢ and the
angle of wall friction 4, there exists a critical wall angle 8,,., such that the exit shock
cannot be constructed for 6, > 0, (see Prakash 1989). If 8, < 8, it may be possible
to construct the shock, as in the case of a rough-walled hopper (§5.3.1). However, for
a smooth-walled hopper with 6, = 30°, and gravity directed radially towards its
vertex, the shock issuing from the edge of the exit slot descends steeply and intersects
the traction-free surface before reaching the centreline. Thus the shock cannot be
fully realized in this case, even though 6, < 6,,.

The ad hoc nature of the exit condition, and the problems associated with it,
represent the major shortcoming of the present work. It is hoped that future work
will focus on the specification of more realistic exit conditions.

6.4. Discharge rates

For a rough-walled bunker, discharge rates have been compared with the
measurements of Nguyen et al. (1980). In the compressible case, predicted values are
well below measurements — the error varies from 38% (of the measured value) at
8, = 15°t0 59 % at 6, = 32° (figure 23). Note that these figures are based on the use of
a shock as the exit condition. For illustrative purposes, an alternative exit condition
o* = 0.0194 has also been used here. The alternative condition leads to discharge
rates that are within 22 % of the measured value. Thus the discharge rate is sensitive
to the exit condition used but, unfortunately, a satisfactory condition is lacking. It
should be emphasized that other aspects of the theory, such as the treatment of the
transition region, and the qualitative behaviour of solutions in the hopper section,
are unaffected by the choice of the exit condition.

The asymptotic fields can be used to obtain an approximate semi-analytical
expression for the discharge rate, as explained in §5.3.4. Compared to the integration
of the MCA equations, the computational effort required is trivial. Further, the
difference between approximate and exact (numerical) discharge rates is only about
9% (figure 23).

6.5. Density profiles
Comparison with the measurements of Fickie et al. (1989) shows that for the
parameter values used here, the density profile along the centreline of the hopper is
qualitatively similar to that observed, but the latter varies more strongly near the
exit slot (figure 24). However, just below the exit slot there is good agreement
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between the two, and the error is less than 8 % (figure 25). The error increases on
moving downwards, presumably due to the lateral spreading of the particle jet. Since
the measurements show a smooth density variation across the plane of the exit slot,
the exit shock is not realized in practice, but its use permits prediction of some of the
observed features.
6.6. The incompressible approximation

The incompressible equations are shown to be a special case of the basic equations,
obtainable from the latter in the limit A — 0. Results obtained with the compressible
(MCA) and incompressible equations are qualitatively similar, but the computational
time is shorter in the latter case. For example, with the asymptotic fields as the initial
conditions, 8, = 32°, and parameter values as in figure 23, integration of the MCA
requires 26 min while the incompressible approximation requires 16 min.

The difference between incompressible and compressible discharge rates, expressed
as a percentage of the latter, is about 10% (figure 23). These results have been
obtained for a material with A = 0.02; it is likely that the difference will increase with
A. As shown in figure 23, the incompressible values are closer to the measurements
than the compressible values. This is a paradoxical result, as there is strong
experimental evidence of dilation near the exit slot, suggesting that a compressible
model should be more realistic. Therefore, it may be necessary to modify the manner
in which density variation has been incorporated in the present work, and perhaps,
also the exit condition.

The approximate analysis referred to above predicts incompressible discharge
rates that are within 11% of exact (numerical) values. Further, it suggests that
inclusion of density variation causes a reduction in the discharge rate, and this is
borne out by the results shown in figure 23.

We are grateful to Professors Renuka Ravindran and Phoolan Prasad for helpful
suggestions regarding numerical computations, and to Professor Roy Jackson for
sending us a copy of the article by Fickie et al. (1989) prior to publication.

Appendix A.t The asymptotic stress field in the bin
Appendix B.T Evaluation of the parameter n
Appendix C. Asymptotic fields

C. 1. Governing equations for the asymptotic fields

The momentum balances (106) and (107) admit a solution of the form (112) for o},
and for y,. On substituting (112) into (106) and (107), we get two groups of terms:
(@) one involving functions of §, and (b) one involving functions of § multiplied by
Inr*. Setting each group of terms to zero leads to ordinary differential equations for
byys 911, b1s, and g,,. Similarly, the condition of coaxiality and the equation of
continuity lead to ordinary differential equations for w,; and w,,.

Boundary conditions for these equations may be specified as follows. The wall
friction condition (44) is expanded in powers of A to get

2, (0w) 8in 2y4n
2(sin ¢ + cos 2vy,,,)’

gll(ew) = glz(gw) = 0 (C la” b)

At the centreline, the condition of symmetry implies
911(0) = 0;  g,,(0) = 0. (C2)

t Copies are available on request either from the editor or from the authors.
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Similarly, (113) and (114) imply

0w
k(6,) = J (pg wo+w;,)d6 = 0. (C3)

[s]

It is found that the above equations admit an exact solution of the form
bia=p3by; G12=0; wy, =—pgw, (C4)

The remaining differential equations for b,;, g;;, and w,;, together with the
equation for w,, may be integrated subject to boundary conditions given by (C 1a)
and (C 2), and specified values of two constants P, and F,, where

Py =wy(0,); P, =w;,(0,,). (C5)

As mentioned in §5.3.2, we estimate P, and I, approximately by using the exit
condition. Details are given below.

Consider the following procedure. The field variables may be expanded in powers
of A, as in (94), and substituted into the basic equations (23)—(27). Setting terms of
O(A°) and of O(A?) to zero results in two sets of equations. Initial conditions along the
entry shock, or for that matter along any smooth curve which is not too close to the
hopper exit, are needed to integrate these equations. Here these initial conditions
may be taken to be given by the asymptotic fields, generated as described above (see
also §C. 2).

The equations of O(A% and O(A') may then be integrated downwards to obtain
vk (r*, 0), ¥ (r*, 0) etc. Substituting these functions into the exit condition (91) gives

% (9% )2 e 1Ay —
0(X%): Po (U;o) _{tan[(4ﬂ: 1P) —Ywl— b1} -0, (C 6)
) a,
O(A%): pY o5 vl + 205 pyvi—pg v ot =0, €7

where @, and b, are defined by (92), and all the functions are evaluated at the edge
of the exit slot (r* = r¥,6 = 0,). At this point, v}, = v¥ (), v = v}{F,. P,). and so on.
Since the values of P, and P, have been chosen arbitrarily, (C 6) and (C 7) will not be
satisfied in general. Hence these values must be changed, and the above procedure
repeated until (C 6) and (C 7) hold to within a prescribed tolerance.

This method is extremely tedious in practice, since an analytical solution is not
available even for the equations of O(A%). Hence the following alternative method is
used to estimate the values of £, and P,. Using the Mohr-Coulomb yield condition
(51), the asymptotic fields correct to O(A') for p*, v} and v}, and to O(A®) for ¢y /06
and 00/06, the r-component of the momentum balance, (24), may be integrated to
obtain an analytical expression for ¥ = o(r*, 6,), as discussed in §C. 3 below. This
takes the form

o8 = oua(r¥, 0 D)+ Ao 5, (r*, 0, P, By) (C8)
where functions 0%, and o¥, are given by (C 20). Equations (C 5) imply
P, P, YPInr¥
VR0, = 3 WR(E.0,) = r——(%) (9)

Replacing ¥ and o} in (C 6) and (C 7) by o¥%, and o},, respectively, p§ and p} by
(100) and (110), respectively, and using (C 9), we get

wo(f,) =P, = kl(r:)%;
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(A, =4, k) +py(A,+A, k3 In
2p5 4,

*
Te

w,(0y) =P =F l:{p12

_ P4, — A, k) —pi(As— A, k)

- _ [ Ajtan(rn—ip—v,)—b,] }
where b= {alp:+A2[tan(%n—%¢—yw>—b1] ’ (©11)

and the constants 4, —A4, are given by (C 21). The values of P, and P, obtained from
(C 10) are not exact, since several simplifying assumptions have been used in deriving
(C 8)—(C 11).

Using the boundary conditions (C 1), (C 2), and (C 10), the relevant differential
equations are integrated numerically using the STIFF3 routine (Villadsen &
Michelsen 1978, pp. 321-323) to obtain b,,(), g,,(0), w,(8) and w,,(f). This completes
the determination of the asymptotic fields.

C.2. Initial conditions

In this section, we construct initial conditions based on the asymptotic fields, and
compare them with those obtained earlier using the entry shock.

The initial radial velocity v}, along any smooth curve is obtained by using (C 15b),
where wy(0) and w,,(f) arc estimated by the procedure described in §C. 1 above.

Regarding the initial stress and density profiles, it turns out that for typical
parameter values, the asymptotic fields imply a(r¥,6,) > 1 when the expansions
p* = p¥+Ap¥ and o* = ¥ + Ao} are used in (29). For example, with the parameter
values reported by Nguyen ef al. (1980), a(r},0,,) = 1.104. As discussed in §3.4, this
value is greater than the maximum permissible value a,, = 1.054. The difficulty is
circumvented by using the asymptotic fields for o ((102) and (112)) and « ((101) and
(109)), and evaluating the initial stress and density profiles from

1

p* = * *N\]

(%)
Since the numerical integration is based on the MCA equations, the actual value of
y(r¥, 8,) is replaced by v, (=g,(0,,)). This is reasonable since the difference in values
is <0.2%.

In the present work, the values along the entry shock of the various fields discussed
above are used as the initial conditions. When these are compared with the initial
conditions based on the entry shock, the profiles of v} and y are found to be
qualitatively similar, while those of o* and p* exhibit marked differences. For
example, in the former case, o* increases from 1.2 at 6 =0to 1.6 at 8 =6, = 15°,
whereas in the latter case, it decreases from 21.2 at § = 0 to 15.0 at 6. (These results
are based on the parameter values listed in the caption of figure 23.) Perhaps this
difference in initial conditions is responsible for the two types of behaviour exhibited
by the solutions of the MCA equations. When the asymptotic fields are used as initial
conditions, the y-profiles remain monotonic and the integration proceeds without
undue difficulty. In contrast, when the entry shock is used to generate initial
conditions, the y-profiles quickly become non-monotonic and exhibit steep fronts

(figure 22). This makes it difficult to integrate the governing equations, as discussed
in §5.3.3.

o* = (a,+Aa,) (0k,+Ack); (C12)
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C.3. An approximation for the stress along the wall

The results of numerical integration of the basic equations indicate that the following
features are approximately true of the solution deep in the hopper section of a steep-
walled bunker:

y=y(0): vf=0; 7%=c*sing. (C 13)

By incorporating these observations and appropriate asymptotic fields into the
momentum balance (24), it is possible to obtain an estimate for the mean stress along
the wall o* = o*(r*,0,,), as described below. In the incompressible case, Williams
(1977) has used (C 13) and other assumptions to obtain upper and lower bounds on
discharge rates from conical hoppers.

Substituting (C 13) into the r-component of the momentum balance, we get

i 2
_sin ¢ cos 27] 60' [2 sin ¢ cos 2y (1 n 67):]

r* o0
sin ¢ sin 2y 0o * ok
=-—¢F=——’y—a§—p*v;"ar—*—p*cos0. (C 14)

The functions p*, v¥, 9o*/06 and Jy/00 in (C 14) are approximated by using the
asymptotic fields, as follows:

p* = pg+(p,(0)+p,Inr¥) A5 (C 150)
o =0 +(“’1;£0)+”’1:i‘9) lnr*)/\; (C 15b)

oo* db, 0y dg,

W_T*@’ E—@', (C 15(',d)
where b, and g, arc obtained from the radial stress field (Jenike 1964 b). To simplify
the analysis, we have used asymptotic fields correct to O(A%) for do*/06 and ¢y /00.
Computations indicate that this assumption is reasonable, except close to the exit
slot (Prakash 1989). Though the error involved in the approximations increases with
£, the magnitudes of 80*/00 and o* decrease. Hence the error introduced into the
solution of (C 14) may be less than expected.

Substituting (C 15) into (C 14), and setting 6 = 6,, we get a linear ordinary
differential equation for o = o*(r*,0,,):

do¥ [k
dr (T*) o =q(r™), (€16
2sin ¢ cos 2y, (1 +dg,/db)
_ . C17
where (1 —sin ¢ cos 2y,,) ( !
and

1
(1—sin ¢ sin 2y,,)

q(r*) = pbi_ {p12 Llnr*

db,
[dﬁ sin ¢ sin 2y, —pg cos 6, +( ") r

P
*)?
(Tl) (205 P, P+ (P11 +p1o) Pil+pyy 0080, +pyy 0086, lnr*” (C 18)
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Equation (C 16) may be integrated to get

0% = oho+ Aoy, (€ 19)
A, P?
where o, =A r*— (r2*)21§
A, P? 24,P, P, A,Pilnr*
o =— (73*)21_ (:*)12 24 4(71)2 + A r*Inr*+Agr*. (C 20)
Here,
A _ pgcosf,—(db,/dB)sin ¢ sin 2y, 4 = oy )
17 (1—singeos2y,)(k—1) ° T? (L—singcos2y,)(k+2)’
A4, = (Puutpi)(k+2)—py, | 4 = Pz . (C 21)

(1—singcos2y,)(k+2)>" ~*  (1—singcos2y,)(k+2)’
P1z cos b, 4. = (pu(k—1)+pyp) cos by,

45 = (1—sin¢cos2'yw)(k—1); ¢ (1—sin¢cos2y,)(k—1)*

The integration constant has been dropped in (C 19) since the solution is assumed to
be independent of initial conditions.
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